Neisseria meningitidis (the meningococcus, family Neisseriaceae) is a major causative agent, worldwide, of potentially life-threatening meningitis and septicemia. The organism is a Gram-negative β proteobacterium that resides normally as a commensal on the mucosal epithelium of the human nasopharynx. However, a combination of the expression of key microbial virulence factors, host susceptibility, inadequate innate immune recognition, and changes in niche environmental conditions can favor bacterial invasion of the host.

The pathogenesis of meningococcal infection involves initial penetration of the nasopharyngeal mucosal epithelium, entry into the blood, and the development of a bacteremia, which occurs in the absence of host humoral immunity. The meningococcus is a classical meningeal pathogen, i.e., it is capable of passing across the blood-cerebrospinal fluid (CSF) barrier to enter the CSF-filled subarachnoid space (SAS) to colonize the leptomeninges [1–3]. The consequences to the host are a compartmentalized intravascular inflammatory response, septicemia, and/or a compartmentalized intracranial inflammatory response, leptomeningitis [4]. Meningococcal infection can be sporadic, hyper-sporadic, or epidemic in nature, and global estimates for infection are ≈1.2 million cases each year with a toll of ≈135,000 deaths [5]. Despite successful antibiotic treatment and advances in intensive care management of patients with meningococcal infection, the mortality rate is still high at ≈15% in industrialized countries, and the disease is rightly feared by the public, parents, and physicians for the rapidity of onset of both clinical symptoms and the decline of patients’ health. Moreover, survivors are often faced with permanent physical and neurological sequelae, including loss of limbs; auditory and visual impairment; cognitive dysfunction; educational, behavioral, and developmental problems; seizures and persistent headaches; and motor nerve deficits, hydrocephalus, and permanent brain damage [6]. These outcomes impact the quality of life of the affected individuals and their families and on the providers of health, welfare, and social services.

Since Weichselbaum first identified the meningococcus from the CSF of a patient with meningitis in 1887 [7], key discoveries about the nature of the organism, the pathogenesis of infection, and the mechanisms of natural immunity have led, finally, to the development and introduction of safe and effective vaccines. The classical studies by Goldschneider and colleagues in the late 1960s identified the correlation between the development of serum bactericidal antibodies and protection from meningococcal infection [8, 9]. Combined with our increased understanding of meningococcal surface antigen structure and function, capsule polysaccharide-protein conjugate vaccines against meningococci that express the serogroup A, C, Y, and W-135 capsules have been developed and introduced into adolescent and adult immunization schedules [10, 11] and trialed in young children [12]. Conjugate vaccines have already significantly reduced meningococcal disease in industrialized countries, e.g., for serogroup C infection [13], and the long-term expectation is that the introduction of new conjugate vaccines against serogroup A will lead to a decline in epidemic disease reported in the “African Meningitis Belt” [14]. Today, a concerted effort is aimed at developing vaccines to serogroup B meningococci, which present a greater technical challenge, due to the poor immunogenicity of its capsule and the molecular mimicry of foetal NCAM, thereby necessitating a search for subcapsular antigens capable of inducing protective
immune responses. The past decade has seen the publication of many *Neisseria* spp. genomes [15–22], and these have underpinned advances in molecular methods and techniques with applications to vaccine design. The result is new vaccines for serogroup B that are showing promise in clinical trials [23–25] and a plethora of experimental vaccines that have shown success in preclinical, laboratory studies.

The key discoveries about the meningococcus would not have been possible without significant developments in laboratory methods for studying the pathogen at the molecular and cellular levels. Many of these laboratory methods have been described in the landmark books on meningococcal vaccines and meningococcal disease, edited by Andrew Pollard and Martin Maiden for the series *Methods in Molecular Medicine* [26, 27]. This new book, *Neisseria meningitidis: Advanced Methods and Protocols*, does not simply revisit and update the methods and protocols described in the books from Pollard and Maiden, a task of itself unnecessary due to the comprehensive nature of these previous volumes, but it offers a collection of advanced methods and protocols that in many ways reflect the development and refinement of several new technologies applied to the meningococcus. Several of the chapters in this book describe methods that rely on the collection of complete sets of biological data, for example, using the genome to generate transcriptomes, proteomes, and metabolomes. However, there are many new -omics that are being developed both theoretically and practically (e.g., the interactome, molecuome, cytome, and regulome, to name but a few), and these are now beginning to be applied to the study of *Neisseria* and many other human pathogens. Laboratory methods and protocols for these new -omics could be the subjects of future volumes.

Neisseria meningitidis: Advanced Methods and Protocols begins with a review of the biology, microbiology, and epidemiology of the meningococcus, which is followed by two chapters that provide a clinical context, namely, in the classification and pathogenesis of meningococcal infections and a technique for detecting the pathogen in CSF samples from patients. In cases of undefined meningeal irritation, the latter method provides a means for identifying between the important bacterial and viral causes of meningitis.

A number of chapters then follow that provide methods and protocols for investigating the molecular biology and biochemistry of the meningococcus. These techniques can provide useful tools for vaccine and pathogen–host interaction studies and include methods for generating knock-out and complementation strains of the meningococcus, for identifying and characterizing small RNA molecules and for the expression of purified meningococcal proteins for crystallization. A particular area of *Neisseria* research that, if not exactly neglected, is not always appreciated relates to the metabolism of the meningococcus. Hence, a chapter is provided that explains how genome-scale metabolic networks can be constructed using a constraint-based modeling approach, using available genome sequence databases and high-throughput bioinformatics. This is followed by a complementary method for studying adaptations in meningococcal/microbial proteomes to changing environmental conditions.

The next collection of chapters broadly covers pathogen–host cell interactions and is prefaced with an introductory review of our current knowledge of meningococcal surface ligands and their respective host cell receptors. A protocol for studying meningococcal interactions with an animal model is presented, followed by methods used for culturing and investigating biofilms in vitro. Interactions of bacteria with host cells are subject to environmental stress and physical forces applied to bacterial ligand–host cell receptor binding events, and methods are provided for investigating bacterial adhesion under shear stress and the forces exerted by the meningococcal pilus adhesin. The literature is replete with in vitro cell culture models used for studying bacterial interactions, from human explant models to
monocultures of primary cells and transformed cells of myeloid and nonmyeloid origins: for this book, protocols are described for isolating human dendritic cells and using them to study host–Neisseria interactions, acknowledging the important role that these cells have in sentinel immune recognition during Neisseria infection and in driving polarization of naïve T-cell helper responses. Finally, the events that follow bacterial interaction with host cell receptors are considered in two chapters that present methods for investigating ligand–receptor interactions, by using hydrogen/deuterium exchange coupled to mass spectrometry and nanoscale imaging techniques to visualize the interactions between pathogen-associated molecular patterns (PAMP) and host pattern recognition receptors (PRR).

The next chapters consider the consequences of meningococcal interaction with host cells; in-depth protocols are provided for analyzing the transcriptome of the pathogen and host epithelial and endothelial cell models, followed by a detailed technical review on the experimental design that allows the researcher to generate valuable and reliable data from using the pan-Neisseria microarray. A major consequence of meningococcal infection is host cell damage, clearly seen in patients with sepsis and meningitis, and in vitro methods are provided for investigating host cellular apoptosis/necrosis induced by the pathogenic Neisseriae.

The final part of this book focuses on methods and protocols for vaccine antigen discovery and vaccine design. Methods are provided for two different approaches, one using proteomics to analyze the human immune response to Neisseria meningitidis and the other, “reverse vaccinology.” In particular, the latter chapter provides detailed methods for in silico identification and selection of antigens, through production of recombinant proteins for immunization and analyses of the immune response. The final chapter provides a protocol for preparing experimental DNA vaccines to bacterial polypeptides.

Many of the techniques described herein can be readily used to study other pathogens and diseases and should have broad appeal to clinical and nonclinical scientists alike. I do accept that some of these methods can seem daunting or require specialized equipment, but I do hope that they stimulate collaboration between readers and authors. This book could not have been possible without the contributions of many, and I would like to express my gratitude toward all authors, all of whom enthusiastically contributed their articles and showed patience with my editing; to the staff at Humana Press for commissioning this volume and especially to the series editor, John Walker, who has provided support and advice when needed. Finally, although this past decade has seen tremendous advances in the fight against meningococcal infection, there is still much to learn about the meningococcus and not only does it continue to surprise us with its complex nature, but also its relationship with its host reveals a great deal about human biology.

Southampton, UK

Myron Christodoulides

References

Contents

Preface .. v
Contributors ... xi

1 *Neisseria meningitidis*: Biology, Microbiology, and Epidemiology 1
 Nadine G. Rouphael and David S. Stephens

2 Classification and Pathogenesis of Meningococcal Infections 21
 Petter Brandtzaeg and Marcel van Deuren

3 Detection of *Neisseria meningitidis* in Cerebrospinal Fluid Using
 a Multiplex PCR and the Luminex Detection Technology 37
 Jens Kjølseth Møller

4 Generating Knock-Out and Complementation Strains
 of *Neisseria meningitidis* .. 55
 Vincent van Dam and Martine P. Bos

5 Identification and Functional Characterization of sRNAs
 in *Neisseria meningitidis* .. 73
 Yvonne Pannekoek and Arie van der Ende

6 Expression, Purification, and Crystallization of Neisserial Outer
 Membrane Proteins ... 91
 Muhammad Saleem, Jeremy Moore, and Jeremy P. Derrick

7 Genome-Scale Metabolic Models: Reconstruction and Analysis 107
 Gino J.E. Baart and Dirk E. Martens

8 TMT Labelling for the Quantitative Analysis of Adaptive Responses
 in the Meningococcal Proteome 127
 **Karsten Kuhn, Christian Baumann, Jan Tommassen,
 and Thorsten Prinz**

9 Meningococcal Ligands and Molecular Targets of the Host 143
 Darryl J. Hill and Mumtaz Virji

10 In Vivo Imaging of Meningococcal Disease Dynamics 153
 Hong Sjölinder and Ann-Beth Jonsson

11 Methods for Studying *Neisseria meningitidis* Biofilms 169
 Michael A. Apicella, Jianqiang Shao, and R. Brock Neil

12 A Laminar-Flow Chamber Assay for Measuring Bacterial Adhesion
 Under Shear Stress ... 185
 Magali Soyer and Guillaume Duménil

13 Techniques to Measure Pili Retraction Forces 197
 Nicolas Biais, Dustin Higashi, Magdalene So, and Benoit Ladoux

14 Human Dendritic Cell Culture and Bacterial Infection 217
 Hannah E. Jones, Nigel Klein, and Garth L.J. Dixon
15 Hydrogen–Deuterium Exchange Coupled to Mass Spectrometry to Investigate Ligand–Receptor Interactions .. 237
Jessmi M.L. Ling, Leslie Silva, David C. Schriemer, and Anthony B. Schryvers

16 Visualising PAMP–PRR Interactions Using Nanoscale Imaging. 253
Kathy Triantafilou and Martha Triantafilou

17 Transcriptome Analyses in the Interaction of Neisseria meningitidis with Mammalian Host Cells .. 267
Biju Joseph, Matthias Frosch, Christoph Schoen, and Alexandra Schubert-Unkmeir

18 The Use of the Pan-Neisseria Microarray and Experimental Design for Transcriptomics Studies of Neisseria ... 295
Nigel J. Saunders and John K. Davies

19 Analysis of Parameters Associated with Prevention of Cellular Apoptosis by Pathogenic Neisseriae and Purified Porins ... 319
Paola Massari and Lee M. Wetzler

20 Analysis of the Immune Response to Neisseria meningitidis Using a Proteomics Approach ... 343
Jeannette N. Williams, Myron Christodoulides, and John E. Heckels

21 Antigen Identification Starting from the Genome: A “Reverse Vaccinology” Approach Applied to MenB ... 361
Emmanuelle Palumbo, Luigi Fiaschi, Brunella Brunelli, Sara Marchi, Silvana Savino, and Mariagrazia Pizza

22 A DNA Vaccine Strategy for Effective Antibody Induction to Pathogen-Derived Antigens ... 405
Jason Rice and Myron Christodoulides

Index ... 421
Contributors

MICHAEL A. APICELLA • The Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
GINO J.E. BAART • VIB Department of Plant Systems Biology/Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
CHRISTIAN BAUMANN • Proteome Sciences R&D, Frankfurt am Main, Germany
NICOLAS BIAIS • Department of Biological Sciences, Columbia University, New York, NY, USA
MARTINE P. BOS • Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
PETTER BRANDTZAEG • Departments of Pediatrics and Medical Biochemistry, University of Oslo, Oslo, Norway
BRUNELLA BRUNELLI • Novartis Vaccines and Diagnostics, Siena, Italy
MYRON CHRISTODOULIDES • Division of Infection, Inflammation, and Immunity, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton, UK
VINCENT VAN DAM • Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
JOHN K. DAVIES • Nursing and Health Sciences, Monash University, VIC, Australia
JEREMY P. DERRICK • University of Manchester, Manchester, UK
MARCEL VAN DEUREN • Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
GARTH L.J. DIXON • Department of Microbiology, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, UK
GUILLAUME DUMÉNIL • INSERM, U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, UMR-S970, Paris, France
ARIE VAN DER ENDE • Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity, Amsterdam, The Netherlands
LUIGI FIASCHI • Novartis Vaccines and Diagnostics, Siena, Italy
MATTHIAS FROSCH • Institute for Hygiene and Microbiology, Würzburg, Germany
JOHN E. HECKELS • Division of Infection, Inflammation, and Immunity, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton, UK
DUSTIN HIGASHI • Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
DARRYL J. HILL • School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
HANNAH E. JONES • Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, UK
ANN-BETH JONSSON • Department of Genetics, Microbiology, and Toxicology (GMT), Stockholm University, Stockholm, Sweden
BIJU JOSEPH • Institute for Hygiene and Microbiology, Würzburg, Germany
NIGEL KLEIN • Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, UK
KARSTEN KUHN • Proteome Sciences R&D, Frankfurt am Main, Germany
BENOIT LADOUX • Matières et Systèmes Complexes, CNRS UNR7057/Université Paris 7, Paris, France
JESSMI M.L. LING • Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
SARA MARCHI • Novartis Vaccines and Diagnostics, Siena, Italy
DIRK E. MARTENS • Bioprocess Engineering Group, Wageningen University, Wageningen, The Netherlands
PAOLA MASSARI • Department of Medicine, Evans BioMedical Research Center, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA
JENS KJØLSETH MØLLER • Department of Clinical Microbiology, Vejle Hospital, Vejle, Denmark
JEREMY MOORE • Centre for Structural Biology, Imperial College London, London, UK
R. BROCK NEIL • The Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
EMMANUELLE PALUMBO • Novartis Vaccines and Diagnostics, Siena, Italy
YVONNE PANNEKOEK • Department of Medical Microbiology, Academic Medical Center, Center for Infection and Immunity, Amsterdam, The Netherlands
MARIAGRAZIA PIZZA • Novartis Vaccines and Diagnostics, Siena, Italy
THORSTEN PRINZ • Proteome Sciences R&D, Frankfurt am Main, Germany
JASON RICE • Division of Cancer Sciences, Genetic Vaccines Group, University of Southampton Medical School, Southampton, UK
NADINE G. ROUPHAEL • Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
MUHAMMAD SALEEM • University of Manchester, Manchester, UK
NIGEL J. SAUNDERS • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
SILVANA SAVINO • Novartis Vaccines and Diagnostics, Siena, Italy
CHRISTOPH SCHOEN • Institute for Hygiene and Microbiology, Würzburg, Germany
DAVID C. SCHRIEMER • Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
ANTHONY B. SCHRYVERS • Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
ALEXANDRA SCHUBERT-UNKMEIR • Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
JIANGQING SHAO • The Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
LESLIE SILVA • Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
HONG SJÖLINDER • Department of Genetics, Microbiology, and Toxicology (GMT), Stockholm University, Stockholm, Sweden
MAGDALENE SO • Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
MAGALI SOYER • INSERM, U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, UMR-S970, Paris, France
DAVID S. STEPHENS • Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Laboratories of Microbial Pathogenesis, Atlanta, VA Medical Center, Decatur, GA, USA
JAN TOMMASSEN • Department of Molecular Microbiology, Utrecht University, Utrecht, The Netherlands
KATHY TRIANTAFILOU • Department of Child Health, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
MARTHA TRIANTAFILOU • Department of Child Health, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
MUMTAZ VIRJI • School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
LEE M. WETZLER • Department of Medicine, Evans BioMedical Research Center, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA
JEANNETTE N. WILLIAMS • Division of Infection, Inflammation, and Immunity, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton, UK