Allostery

Methods and Protocols

Edited by

Aron W. Fenton

Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, USA

Humana Press
Dedication

I am convinced that all that is in the Universe revolves around my amazing wife; without her efforts, I could not do science. I have been in the fortunate position to have been trained by three mentors who are not only good people, but also believe in science at the highest caliber. Therefore, I would like to dedicate this book to these four individuals: Shellee Fenton and Drs. James B. Blair, Gregory D. Reinhart, and Gerald M. Carlson.
Preface

In the past 7 years, allostery has resurfaced as a major focus in understanding protein structure/function. Much of this rejuvenated interest has been driven by the ability of NMR to monitor protein dynamics and the potential of determining how these dynamics contribute to protein functions, including allostery (1–6). A second driving force for the recent interest is a growing appreciation that allosteric drugs offer safety advantages over conventional drugs (7–9). This renewed interest has resulted in several reviews on allostery (10–13).

At the onset of any discussion on allostery, it is beneficial to review the exact phenomenon included in the discussion. Shortly after the original use of “allosteric” (14), confusion over the definition of this term showed up in the literature. One source of confusion is whether “allostery” and “cooperative” should be treated as two synonyms to describe the same principle or if these words describe two different phenomena. To indicate similarities at the phenomenological level, it is now common to use “allostery” and “cooperative” interchangeably, with further definition as either “homotropic,” to indicate energetic coupling when the two ligands are identical, or “heterotropic,” to indicate energetic coupling when the two ligands are nonidentical. Even with these distinctions, the classification of homotropic and heterotropic as independent forms of regulation has been much debated. Alberto Sols articulated why these properties should be considered as related but independent properties by emphasizing that homotropic mechanisms require that the protein is an oligomer (15):

...because of confusion between two frequently linked but essentially independent concepts: (i) specifically regulatory sites and (ii) multiplicity of interacting equal sites in oligomeric proteins. ...

To compound the tendency to confusion, oligomerism is not only not necessarily linked to allosteric (heterotropic) effects but is not even the only basis for positive cooperativity (homotropic). ...

By contrast, a purely thermodynamic view led Harvey Fisher and coworkers to express the similarities in these two properties (16):

The term “cooperativity,” or, more precisely, “heterotropic cooperativity” has been used occasionally to describe systems such as that shown ... (in an allosteric energy cycle). ... in cases where the binding of one ligand either increases or decreases the affinity of a second, chemically distinguishable ligand. A majority of workers in the field, however, prefer to restrict the use of the term “cooperativity” to homotropic systems, and to refer to such effects in heterotropic systems as “positive and negative interactions.” ... however, such a formal distinction between homotropic and heterotropic systems (implying as it does that the two classes of systems require totally different mechanisms to achieve what is essentially the same result) is an unwarranted assumption and one which may prove to be misleading.

Given this long standing historical debate, we have found the most productive approach is to define the type of regulation that is being described. However, one distinction that should be noted is the additional challenges associated with the study of homotropic systems since the concentrations of the two ligands cannot be varied independently. In this book, the majority of the chapters focus on studies of heterotropic systems. However, given the historical association between heterotropic and homotropic effects, techniques specific to the study of homotropic systems are also represented.
A second level of confusion is whether “allostery” includes any reference to a change in protein conformation. The original definition given by Monod et al. in 1963 (14) had no reference to conformational changes. Shortly thereafter, Monod and coworkers offered a plausible model to explain allostery derived from assumed conformational changes (17). The 1965 reference has been used to suggest that the recent introduction of dynamics into the discussion of allostery offers a “new view” of allostery (3, 18, 19). Others have relied on the 1963 definition to emphasize that the original definition of allostery placed no constraints on the molecular source of allosteric regulation and that dynamics were always accounted for in the description of this phenomena (11, 12, 20, 21).

In the Fenton laboratory, we use the word “allostery” to refer to heterotropic coupling events, with no implication that the mechanism for this through-protein communication is restricted to a change in protein conformation. Therefore, allosteric regulation is defined functionally as how a macromolecule binds one ligand differently when a second ligand is or is not prebound to the macromolecule. Since the definition of allostery influences what is expected as the “molecular source of allostery” (22), the use of the same definition has been strongly encouraged throughout all chapters in this volume (12). However, unifying the use of terms across all structure/function studies is an unrealistic goal, and even in several chapters of this volume, the influence of historical deviations of our favored definition is apparent.

Despite the semantic debates regarding classification, the common feature of allosteric systems is ligand-induced, through-protein changes. Therefore, any technique that can be used to study protein structure/function questions can be applied to the study of allostery. As such, the primary value of this book is the logic that is necessary to study this phenomenon, a phenomenon that is well recognized through the history of the life sciences and very poorly understood at the molecular level.

Kansas City, KS, USA
Aron W. Fenton

References

Acknowledgment

This work was supported in part by NIH grant DK78076.
Contents

Dedication ... v
Preface ... vii
Acknowledgment. ... xi
Contributors .. xv

Part I Monitoring Allosteric Function

1. Binding Techniques to Study the Allosteric Energy Cycle
 James K. Kranz and José C. Clemente
 3
2. Kinetic Trapping of a Key Hemoglobin Intermediate
 Jo M. Holt and Gary K. Ackers
 19
3. Allosteric Coupling Between Transition Metal-Binding Sites
 in Homooligomeric Metal Sensor Proteins
 Nicholas E. Grossoehme and David P. Giedroc
 31
4. Studying the Allosteric Energy Cycle by Isothermal Titration Calorimetry
 Marta Martinez-Julvez, Olga Abian, Sonia Vega, Milagros Medina,
 and Adrian Velazquez-Campoy
 53
5. Detecting “Silent” Allosteric Coupling
 Harvey F. Fisher
 71
6. Using Mutant Cycle Analysis to Elucidate Long-Range Functional
 Coupling in Allosteric Receptors
 Jai A.P. Shanata, Shawnalea J. Frazier, Henry A. Lester,
 and Dennis A. Dougherty
 97

Part II Monitoring Allosteric Conformational Changes

7. A Review of Methods Used for Identifying Structural Changes
 in a Large Protein Complex
 Owen W. Nadeau and Gerald M. Carlson
 117
8. Allosteric Mechanisms of G Protein-Coupled Receptor Signaling:
 A Structural Perspective
 Tarjani M. Thaker, Ali I. Kaya, Anita M. Preininger,
 Heidi E. Hamm, and T.M. Iverson
 133
9. Dynamic Light Scattering to Study Allosteric Regulation
 Aaron L. Lucius, P. Keith Veronese, and Ryan P. Stafford
 175
10. Dissecting the Linkage Between Transcription Factor Self-Assembly
 and Site-Specific DNA Binding: The Role of the Analytical Ultracentrifuge
 Amie D. Moody, James P. Robblee, and David L. Bain
 187
11. Fluorescence Correlation Spectroscopy and Allostery: The Case of GroEL
 Gabriel A. Frank, Amnon Horovitz, and Gilad Haran
 205
12. The Morpheein Model of Allostery: Evaluating Proteins
 as Potential Morpheeins
 Eileen K. Jaffe and Sarah H. Lawrence
 217
PART III MONITORING ALLOSTERIC CHANGES IN PROTEIN DYNAMICS/SUBPOPULATION DISTRIBUTION

13 Combining NMR and Molecular Dynamics Studies for Insights into the Allostery of Small GTPase–Protein Interactions 235
Liqun Zhang, Sabine Bouguet-Bonnet, and Matthias Buck

14 Hydrogen–Deuterium Exchange Study of an Allosteric Energy Cycle 261
Dorothy Beckett

15 Ensemble Properties of Network Rigidity Reveal Allosteric Mechanisms 279
Donald J. Jacobs, Dennis R. Livesay, James M. Mottonen,
Oleg K. Vorov, Andrei Y. Istomin, and Deeptak Verma

PART IV MACROMOLECULAR AND LIGAND ENGINEERING ALLOSTERIC FUNCTIONS

16 An In Vivo Approach to Isolating Allosteric Pathways Using Hybrid Multimeric Proteins ... 307
Cuijuan Tie and Gregory D. Reinhart

17 Mutations in the GABA\textsubscript{A} Receptor that Mimic the Allosteric Ligand Etomidate ... 317
Stuart A. Forman and Deirdre Stewart

18 Allosteric Regulation of Human Liver Pyruvate Kinase by Peptides that Mimic the Phosphorylated/Dephosphorylated N-Terminus 335
Charulata B. Prasannan, Qingling Tang, and Aron W. Fenton

19 In Silico-Screening Approaches for Lead Generation: Identification of Novel Allosteric Modulators of Human-Erythrocyte Pyruvate Kinase. 351
Ashutosh Tripathi and Martin K. Safo

20 Identification of Allosteric-Activating Drug Leads for Human Liver Pyruvate Kinase .. 369
Aron W. Fenton

PART V COMPUTATIONAL METHODS/AIDS IN THE STUDY OF ALLOSTERY

21 A Critical Evaluation of Correlated Mutation Algorithms and Coevolution Within Allosteric Mechanisms 385
Dennis R. Livesay, Kyle E. Kreth, and Anthony A. Fodor

22 The Advantage of Global Fitting of Data Involving Complex Linked Reactions ... 399
Petr Herman and J. Ching Lee

23 Predicting Binding Sites by Analyzing Allosteric Effects 423
Dengming Ming and Michael E. Wall

Index .. 437
Contributors

OLGA ABIAN • Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Aragón, Spain

GARY K. ACKERS • (Deceased) Department of Biochemistry & Molecular Biology, Washington University School of Medicine, St. Louis, MO, USA

DAVID L. BAIN • Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA

DOROTHY BECKETT • Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA

SABINE BOUQUET-BONNET • Methodologie RMN (CRM2; UMR 7036, UHP-CNRS), Faculté des Sciences et Techniques, Nancy-Université, Vandoeuvre-les-Nancy, France

MATTHIAS BUCK • Department of Physiology and Biophysics, Case Comprehensive Cancer Center, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Comprehensive Cancer Center, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pharmacology, Case Comprehensive Cancer Center, Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA

GERALD M. CARLSON • Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA

JOSE´ C. CLEMENTE • Oncology Research & Development, GlaxoSmithKline, Upper Providence, PA, USA

DENNIS A. DOUGHERTY • Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

ARON W. FENTON • Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, USA

HARVEY F. FISHER • Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA

ANTHONY A. FODOR • Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA

STUART A. FORMAN • Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA

GABRIEL A. FRANK • Departments of Structural Biology and Chemical Physics, Weizmann Institute of Science, Rehovot, Israel

SHAWNALEA J. FraZIER • Division of Biology, California Institute of Technology, Pasadena, CA, USA

DAVID P. GIEDROC • Department of Chemistry, Indiana University, Bloomington, IN, USA
NICHOLAS E. GROSSOEHME • Department of Chemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC, USA
HEIDI E. HAMM • Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
GILAD HARAN • Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
PETR HERMAN • Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
JO M. HOLT • Oro Valley, AZ, USA
AMNON HOROVITZ • Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
ANDREI Y. ISTOMIN • Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
T.M. IVERSON • Departments of Biochemistry and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
DONALD J. JACOBS • Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC, USA
EILEEN K. JAFFE • Fox Chase Cancer Center, Philadelphia, PA, USA
ALI I. KAYA • Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
JAMES K. KRAZ • Biopharmaceuticals Research & Development, GlaxoSmithKline, Upper Merion, PA, USA
KYLE E. KRETH • Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
SARAH H. LAWRENCE • Fox Chase Cancer Center, Philadelphia, PA, USA
J. CHING LEE • Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
HENRY A. LESTER • Division of Biology, California Institute of Technology, Pasadena, CA, USA
DENNIS R. LIVESAY • Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
AARON L. LUCIUS • Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
MARTA MARTÍNEZ-JULVEZ • Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
MILAGROS MEDINA • Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Aragón, Spain
DENGMING MING • Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, China