Preface

The rapid progression of genetics and molecular biology has turned chromosomal engineering from science fiction to reality. Transgenic animals with engineered chromosomes have been produced with success, and chromosomes developed for pharmaceutical protein production are now ready for the medical industry. Engineered chromosomes have also been used in preclinical model experiments for ex vivo stem-cell therapy.

This volume is intended to provide the reader with up-to-date information on this rapidly evolving field, and will attempt to take the reader into the exciting realm of chromosomal engineering from the basic principles to the practical applications of these new technologies. The five overview and ten protocol chapters cover the engineering of chromosomes with extrachromosomal vectors and transposon systems, the manipulation of naturally occurred minichromosomes, the generation and engineering of synthetic artificial chromosomes, and the induced de novo platform artificial chromosome system.

The efforts of the authors and editors will hopefully provide a manual that serves as a bench-side resource for current protocols and help explore prospects for future research and applications.

I am greatly indebted to all contributors, who devoted their precious time to share ideas and expertise that brought about this book, which will be a source of information for anyone interested in new ideas in gene technology.

Szeged, Hungary

Gyula Hadlaczky
Contents

Preface ... v
Contributors ... ix

1 Developing Extrachromosomal Gene Expression
 Vector Technologies: An Overview 1
 Richard Wade-Martins

2 High Capacity Extrachromosomal Gene Expression Vectors 19
 Olivia Hibbitt and Richard Wade-Martins

3 Naturally Occurring Minichromosome Platforms
 in Chromosome Engineering: An Overview 41
 Elena Raimondi

4 Chromosome Transfer Via Cell Fusion .. 57
 Marianna Paulis

5 Insertional Engineering of Chromosomes
 with Sleeping Beauty Transposition: An Overview 69
 Ivana Grabundzija, Zsuzsanna Izsák, and Zoltán Ivics

6 Rodent Transgenesis Mediated by a Novel Hyperactive
 Sleeping Beauty Transposon System 87
 Lajos Mátés

7 Construction and Use of a Bottom-Up HAC Vector
 for Transgene Expression .. 101
 Masashi Ikeno and Nobutaka Suzuki

8 De Novo Generation of Satellite DNA-Based Artificial
 Chromosomes by Induced Large-Scale Amplification 111
 Erika Csonka

9 Downstream Bioengineering of ACE Chromosomes
 for Incorporation of Site-Specific Recombination Cassettes 127
 Amy L. Greene and Edward L. Perkins

10 Chromosome Engineering with Lambda-Integrase Mediated
 Recombination System: The ACE System 141
 Tünde Praznovszky

11 Dendrimer Mediated Transfer of Engineered Chromosomes 151
 Robert L. Katona

12 Engineered Chromosomes in Transgenics 161
 Peter Blasza, Ildiko Sinko, and Robert L. Katona

13 Transfer of Stem Cells Carrying Engineered Chromosomes
 with XY Clone Laser System ... 183
 Ildiko Sinko and Robert L. Katona
14 Mammalian Artificial Chromosomes and Clinical Applications for Genetic Modification of Stem Cells: An Overview 199
 Robert L. Katona, Sandra L. Vanderbyl, and Carl F. Perez

15 Engineered Mammalian Chromosomes in Cellular Protein Production: Future Prospects .. 217
 Malcolm L. Kennard

Index ... 239
Contributors

PETER BLAZSO • Institute of Genetics, Biological Research Center,
Hungarian Academy of Sciences, Szeged, Hungary
ERIKA CSONKA • Biological Research Center, Institute of Genetics,
Hungarian Academy of Sciences, Szeged, Hungary
IVANA GRABUNDZIJA • Max Delbrück Center for Molecular Medicine, Berlin, Germany
AMY L. GREENE • Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
OLIVIA HIBBITT • Department of Anatomy and Genetics, University of Oxford, Oxford, UK
MASASHI IKENO • School of Medicine, Keio University, Tokyo, Japan
ZOLTÁN IVICS • Max Delbrück Center for Molecular Medicine, Berlin, Germany;
University of Debrecen, Debrecen, Hungary
ZSUZSANNA IZSVÁK • Max Delbrück Center for Molecular Medicine, Berlin, Germany;
University of Debrecen, Debrecen, Hungary
ROBERT L. KATONA • Institute of Genetics, Biological Research Center,
Hungarian Academy of Sciences, Szeged, Hungary
MALCOLM L. KENNARD • Kennard Biologic Consultants, North Vancouver,
BC, Canada
LAJOS MATÉS • Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
MARIANNA PAULIS • Istituto di Ricerca Genetica e Biomedica,
Consiglio Nazionale delle Ricerche, Monserrato, Italy,
Istituto Clinico Humanitas, IRCCS, Rozzano, Italy
CARL F. PÉREZ • Metaara Medical Technologies, Inc., Vancouver, BC, Canada
EDWARD L. PERKINS • Department of Biomedical Sciences,
Mercer University School of Medicine, Savannah, GA, USA;
Curtis and Elizabeth Anderson Cancer Institute,
Memorial Health University Medical Center, Savannah, GA, USA
TU NDE PRAZNOVSZKY • Institute of Genetics, Biological Research Center,
Hungarian Academy of Sciences, Szeged, Hungary
ELENA RAIMONDI • Department of Genetics and Microbiology “A. Buzzati Traverso”,
University of Pavia, Pavia, Italy
ILDIKO SINKO • Institute of Genetics, Biological Research Center,
Hungarian Academy of Sciences, Szeged, Hungary
NOBUTAKA SUZUKI • School of Medicine, Keio University, Tokyo, Japan
SANDRA L. VANDERBYL • Vanderbyl Consulting, Kamloops, BC, Canada
RICHARD WADE-MARTINS • Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, UK