Series Editor
John M. Walker
School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For other titles published in this series, go to
www.springer.com/series/7651
How do a lion or an orchid develop from a single cell? Answering this question in detail has fascinated developmental biologists for a long time. Plants and animals can have simple or very complex body organization but they all derive from a single cell, the fertilised egg. This cell divides and the progeny cells divide many—many times to build the entire body but the genetic information does not change during these cell divisions. Therefore, all our cells contain the same genetic information but there are many different tissues with specialised functions in our body. These tissues are different from each other because a different set of proteins are present in the cells that make up a certain tissue. The reason for this is that only a certain set of genes are active in each cell. Gene expression is a relatively complex process; therefore, it can be regulated at several layers. First the chromosomal DNA is transcribed into mRNA and this step is regulated by various mechanisms. For example, transcription factor proteins can activate or suppress the transcription and certain modifications of the DNA and the histon proteins that package the DNA also regulate transcription. The mRNAs are then processed and translocated to the cytoplasm where they are translated into proteins. Accumulation level of a protein can be regulated at the mRNA processing stage, mRNA stability level and through the half-life of the protein itself. One of the most recently recognised regulatory layers involves short RNAs to regulate the translation efficiency of mRNAs. These short RNAs are called microRNAs (miRNAs) since these molecules are very short, only 21–24 nucleotides.

The first miRNA (lin-4) was discovered in 1993, although it was not called a miRNA [1]. The next miRNA (let-7) was discovered 7 years later [2], but at that time these molecules were called small temporal RNAs because of their specific expression pattern during certain developmental transitions. The name miRNA was coined in the following year when three groups identified many short RNAs similar to lin-4 and let-7 in different organisms and because some of them were expressed all the time, the name “short temporal” was changed to miRNA [3–5]. miRNAs soon became one of the most intensively studied subjects in molecular biology. It is now clear that many mammalian genes are regulated by miRNAs, therefore understanding the role of miRNAs in development and disease is an important but difficult task.

One could say that working with miRNAs is not different from working with other RNAs. However, the very small size of miRNAs often requires specific techniques to study them and standard protocols (that are used for mRNA analysis) either cannot be used or important modifications have to be made. This book describes protocols for investigating miRNAs in plant and animal development. The chapters fall into three sections. Chapters 1–6 describe various techniques to detect and profile miRNA expression either spatially or at different time points. In situ hybridisation can establish where the miRNAs are expressed and northern blot, qPCR, deep sequencing, and array can be used to profile the expression of miRNAs at different developmental stages. Deep sequencing also has the potential
to discover new miRNAs. Chapters 7–10 are protocols to manipulate the activity of miRNAs in various organisms. These approaches are very useful to learn more about the function of miRNAs in developmental processes. Finally Chapters 11–15 describe different methods to identify and validate miRNA targets in animals and plants.

Norwich, UK

Tamas Dalmay

References

Contents

Preface ... v
Contributors ... ix

1. In Situ Detection of microRNAs in Animals 1
 Dylan Sweetman
2. Detection of microRNAs in Plants by In Situ Hybridisation 9
 Éva Várallyay and Zoltán Havelda
3. Detecting sRNAs by Northern Blotting 25
 Sara López-Gomollón
4. Profiling MicroRNAs by Real-Time PCR 39
 Nana Jacobsen, Ditte Andreasen, and Peter Mouritzen
 Ericka R. Havecker
6. Detection of MicroRNAs in Prostate Cancer Cells by MicroRNA Array 69
 Xiaoqing Tang, Xiaohu Tang, Jozsef Gal, Natasha Kyprianou, Haining Zhu, and Guiliang Tang
7. MicroRNA Knock Down by Cholesterol-Conjugated Antisense Oligos in Mouse Organ Culture .. 89
 Sharon Kredo-Russo and Eran Hornstein
 Ya-Wen Chen, Ruifen Weng, and Stephen M. Cohen
 Pablo Andrés Manavella and Ignacio Rubio-Somoza
10. Mimicry Technology: Suppressing Small RNA Activity in Plants 131
 Ignacio Rubio-Somoza and Pablo Andrés Manavella
11. Experimental Validation of MicroRNA Targets Using a Luciferase Reporter System ... 139
 Francisco E. Nicolas
12. Experimental Identification of MicroRNA Targets by Immunoprecipitation of Argonaute Protein Complexes 153
 Michaela Beitzinger and Gunter Meister
13. Comprehensive Identification of miRNA Target Sites in Live Animals 169
 Dimitrios G. Zisoulis, Gene W. Yeo, and Amy E. Pasquinelli
viii Contents

14 Target Validation of Plant microRNAs 187
 César Llave, José Manuel Franco-Zorrilla, Roberto Solano,
 and Daniel Barajas

15 A High-Throughput Sequencing-Based Methodology to Identify
 All Uncapped and Cleaved RNA Molecules in Eukaryotic Genomes 209
 Matthew W. Endres, Rebecca T. Cook, and Brian D. Gregory

Index .. 225
Contributors

Ditte Andreassen • Exiqon A/S, Vedbaek, Denmark
Daniel Barajas • Department of Environmental Biology, Centro de Investigaciones Biológicas – CSIC, Madrid, Spain
Michaela Beitzinger • Laboratory for RNA Biology, Center for integrated protein science Munich (CIPSM), Max-Planck-Institute of Biochemistry, Martinsried, Germany
Ya-Wen Chen • Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
Stephen M. Cohen • Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
Rebecca T. Cook • Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
Tamas Dalmay • School of Biological Sciences, University of East Anglia, Norwich, UK
Matthew W. Endres • Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
José Manuel Franco-Zorrilla • Department of Plant Molecular Genetics, Genomics Unit, Centro Nacional de Biotecnología – CSIC, Madrid, Spain
József Gal • Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
Brian D. Gregory • Department of Biology, Penn Genome Frontiers Institute, Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
Ericka R. Havecker • Department of Plant Sciences, University of Cambridge, Cambridge, UK
Zoltán Havelda • Agricultural Biotechnology Center, Gödöllő, Hungary
Eran Hornstein • Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Nana Jacobsen • Exiqon A/S, Vedbaek, Denmark
Sharon Kredo-Russo • Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Natasha Kyprianou • Division of Urology, Department of Surgery, University of Kentucky, Lexington, KY, USA
César LLave • Department of Environmental Biology, Centro de Investigaciones Biológicas – CSIC, Madrid, Spain
Sara López-Gomollón • School of Biological Sciences, University of East Anglia, Norwich, UK
Pablo Andrés Manavella • Max Planck Institute for Developmental Biology, Tübingen, Germany
Gunter Meister • Laboratory for RNA Biology, Center for integrated protein science Munich (CIPSM), Max-Planck-Institute of Biochemistry, Martinsried, Germany
Peter Mouritzen • Exiqon A/S, Vedbaek, Denmark
Francisco E. Nicolas • School of Biological Sciences, University of East Anglia, Norwich, UK
Amy E. Pasquinelli • Department of Biology, University of California, La Jolla, San Diego, CA, USA
Ignacio Rubio-Somoza • Max Planck Institute for Developmental Biology, Tübingen, Germany
Roberto Solano • Department of Plant Molecular Genetics, Genomics Unit, Centro Nacional de Biotecnología – CSIC, Madrid, Spain
Dylan Sweetman • School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
Guiliang Tang • Department of Plant and Soil Sciences & KTRDC, University of Kentucky, Lexington, KY, USA
Xiaohu Tang • Department of Plant and Soil Sciences & KTRDC, University of Kentucky, Lexington, KY, USA
Xiaoqing Tang • Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
Éva Várallyay • Agricultural Biotechnology Center, Gödöllő, Hungary
Ruifen Weng • Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
Gene W. Yeo • Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, USA
Haining Zhu • Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
Dimitrios G. Zisoulis • Department of Biology, University of California, La Jolla, San Diego, CA, USA