Stem Cells & Regenerative Medicine

From Molecular Embryology to Tissue Engineering

Foreword by
Sir John B. Gurdon

Humana Press
Preface

Embryology is a branch of biology that has an immediate bearing on the problem of “life.” Life cannot be fully accounted for without an understanding of its dynamic nature, which expresses itself in the incessant production of new organisms in the process of ontogenetic development. Therefore, embryology is defined as the science of the development of an embryo from the fertilization of the ovum to the fetus stage. Teaching of embryology has long been an established feature at universities throughout the world, both for students in biology and students in medical sciences. During the twentieth century most of this science has been overshadowed by experimental-based genetics and cell biology, which have turned classical embryology into “developmental biology.” Several universities are now teaching developmental biology instead of embryology as a course in biology programs. Significant contributions made in the twenty-first century in the fields of molecular biology, biochemistry, and genomics, integrated with embryology and developmental biology, provide an understanding of the molecular portrait of a “developmental cell.” This integrated approach to development is incorporated in the present book as “stem cell biology,” a new sister branch of embryology/developmental biology that emphasizes the study of self-renewal, differentiation, pluripotency, and nuclear programming, which are characteristics of stem cells. In a broad sense, stem cell biology is nothing more than an understanding of embryology and development together at the molecular level using engineering, imaging, and cell culture principles. With such a wide scope, this book can only be an introduction to stem cell biology.

Stem Cells and Regenerative Medicine: From Embryology to Tissue Engineering is mainly intended for readers in the biotechnology and molecular medicine fields. Although quite a number of books already exist covering stem cells, this book differs, in that is the first text completely devoted to the basic developmental, cellular, and molecular biologic aspects of stem cells and their clinical applications in tissue engineering and regenerative medicine. We took serious consideration in choosing the chapters and sections in this book to maintain the theme of Molecular Embryology to Tissue Engineering.

This book focuses on the basic biology of embryonic and cancer cells and their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. Significant contributions, such as nuclear reprogramming–induced pluripotency, and stem cell culture techniques using novel biomaterials, are also
covered. This text consists of 36 chapters, grouped into six parts. Most of the chapters are written by experts in the field from academia and industry. The goal is to have this book serve as a reference for graduate students, post-docs, and teachers and as an explanatory analysis for executives and scientists in biotech and pharmaceutical companies. Our hope is that this volume will provide a prologue to the field for both newcomers and those already active in the field.

The term “stem cell” appeared in the scientific literature as early as 1868 in the work of the eminent German biologist Ernst Haeckel. Haeckel, a supporter of Darwinian evolution, developed a number of phylogenetic trees to represent the evolution of organisms from common ancestors and called these trees Stammbaume ("stem trees"). In this context, he used the term Stammzelle ("stem cell") to describe the ancestor unicellular organism from which he presumed all multicellular organisms evolved. He referred to fertilized egg as the source that gives rise to all cells of the organism. Later, in 1887, Theodor Boveri and Valentin Hacker identified the earliest germ cells in animal embryos. In 1892, Valentin Hacker described stem cells as the cells that later in development produce oocytes in the gonads. Thus, in these early studies, the term stem cell referred to what we call the “germline lineage,” “primordial germ cells,” and “germline stem cells.” In 1896, Edmund Wilson, an embryologist, reviewed the finding of these German scientists in his book *The Cell in Development and Inheritance*, which was published in English and became an inspirational work for a generation of embryologists and geneticists, especially in United States. Given his wide readership, Wilson is generally credited as having coined the term “stem cell.”

Nuclear programming is the process that instructs specialized adult cells to form early pluripotent stem cells. Pluripotent stem cells possess the capacity to become any type of mature cell in the body and therefore have great potential for experimental and therapeutic purposes. Using the concept of “cellular reprogramming,” Briggs and King in 1952 produced normal tadpoles by transplanting nuclei from blastula cells to enucleated eggs in the frog *Rana pipens*. However, transplanting nuclei from differentiated cells was achieved by John Gurdon in 1962 in the African clawed toad, *Xenopus laevis*, which is now known as the classic nuclear transfer experiment. It took more than another decade (1975) for Gurdon to succeed in producing healthy and sexually mature fertile frogs with functional muscle, beating hearts, well-differentiated eyes, and all of the other organs. This experiment provided the first clear evidence that cell specialization does not involve irreversible inactivation in the genes required for development of an animal. This conceptual framework led to the start of the field of nuclear reprogramming, and Gurdon became known as the “father” of nuclear reprogramming (cloning). It took almost another 10 years to clone an adult sheep, Dolly (in 1996), by Kevin Campbell and Ian Wilmut of the Roslin Institute in Edinburgh, Scotland. This experiment dramatically extended Gurdon’s concept from frogs to mammals. The Dolly-related work of somatic cell nuclear transfer was further extended to produce monkeys, cows, dogs, mice, and other animals. These remarkable contributions stimulated other researchers to think about using nuclear transfer to generate pluripotent human embryonic stem cells for cell replacement therapy.
The road to embryonic stem cells and beyond began in the 1960s with the work of Leroy Stevens from the Jackson Labs, Bar Harbor, Maine, who discovered embryonal carcinoma cells while studying testicular carcinomas. Later Stevens and colleagues demonstrated that these embryonal carcinoma cells are indeed pluripotent stem cells. In the mid-1970s, Gail Martin’s postdoctoral work with Martin Evans at the University of Cambridge led her to develop new in vitro clonal culture methods of embryoid cells. In the early 1980s, Martin, then at the University of California at San Francisco, and Martin Evans and Matthew Kaufman of the University of Cambridge independently isolated stem cells from mouse embryos and coined the term “embryonic stem cells.” It took almost 10 years for Jamie Thompson of the University of Wisconsin to culture monkey embryonic stem cells and subsequently human embryonic stem cells in 1999. Thompson’s work propelled the activity of stem cell research and cell propagation technologies in general.

There are two routes to producing a living animal: (1) injection of a somatic cell nucleus into an enucleated egg (nuclear reprogramming) and (2) use of an embryo to produce embryonic stem cells. In a quite astonishing discovery, Kazutoshi Takahashi and Shinya Yamanaka of Kyoto University in Japan in 2006 for the first time turned adult mouse skin fibroblast cells into pluripotent cells. This breakthrough of inducing fibroblasts was achieved by stable transfection of only four transcription factors (Oct4, Sox2, Klf4, and c-Myc), and these are now referred to as induced pluripotent stem (iPS) cells. The discovery of iPS cells turned the field of nuclear reprogramming upside down. This work was extended and further confirmed by several groups that generated iPS cells from individuals with various neurodegenerative diseases, raising the hope of cell replacement therapy and making personalized medicine a reality. A section of this book with six chapters details the concepts behind nuclear reprogramming and induced pluripotent stem cells.

In 1868, Ernst Neumann suggested that hematopoiesis occurs in bone marrow. He used the term “stem cell” to refer to the common precursor of the blood system in 1912. The debate about the existence of a common hematopoietic stem cell continued for several decades until definitive evidence was provided in 1961 by two Canadian scientists, James Till and Ernest McCulloch. Blood and the system that forms it, known as the hematopoietic system, consists of many cell types with specialized functions (some of these include red blood cells, platelets, granulocytes, macrophages, B and T lymphocytes, etc). Generally, the hematopoietic system is destroyed by radiation and chemotherapeutic agents that kill dividing cancer cells. In order to quantitatively assess the radiation sensitivity of normal bone marrow cells, a colony-forming unit assay was developed by Till and McCulloch, who coined the term “pluripotent hematopoietic stem cells” (HSCs). Today, we know that the best locations for HSCs are bone marrow, umbilical cord blood, and embryonic stem cells. In 1959, for the first time, Edward Donnall Thomas of the University of Washington used HSCs for treating leukemia and lymphomas through bone marrow transplantation. The efficient expansion of HSCs in culture remains one of the major research themes of stem cell biology. Combined applications of genomics, proteomics, and gene therapy approaches will further help to widen the
horizon for clinical applications. According to Irving Weissman of Stanford University Medical School, the progeny produced from hematopoietic stem cells exhibits properties that include self-renewal, differentiation, migration, and apoptosis. A few chapters in the third part of this book highlight the use of HSCs for bone marrow cell therapy, heart transplantation, and cell replacement therapy for neurologic disorders.

The term “tissue engineering” was first used by Eugene Bell of MIT in 1984, and later was also used extensively by Wolter and Meyer in 1984. Tissue engineering combines cells, engineering, and materials methods with suitable biochemical and physiochemical factors to improve or replace biologic functions. In other words, it deals with the repair or replacement of portions of or whole tissues such as bone, blood vessels, bladder, skin, and artificial organs. According to Robert Langer and Joseph Vacanti, it “applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ.” Powerful developments in the multidisciplinary field of tissue engineering have yielded a novel set of tissue replacement parts and implementation strategies. Scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabricate tissues in the laboratory from combinations of engineered extracellular matrices (“scaffolds”), cells, and biologically active molecules. A section of this book with five chapters highlights recent developments in biomaterials, three-dimensional culture systems, lab-on-a-chip concepts, and microtechnologies used in attempts to understand stem cell biology.

Regenerative medicine is a new branch of medicine that attempts to change the course of chronic disease, in many instances regenerating failing organ systems lost due to age, disease, damage, or congenital defects. The term “regenerative medicine” was first referred to in 1992 by Leland Kaiser and then popularly used by William Haselstine of Human Genome Sciences. The term regenerative medicine is often used synonymously with tissue engineering, although those involved in regenerative medicine place more emphasis on the use of stem cells to treat diseases using cell therapies or transplantation methods. This field holds the promise of regenerating damaged tissues and organs in the body by stimulating previously irreparable organs to heal themselves. Regenerative medicine also empowers scientists to grow tissues and organs in the laboratory and safely implant them when the body cannot heal itself. A section in this book is entirely devoted to describing the use of stem cells in muscle repair and treating cardiac and urologic diseases.

Gurdon has spent much of his career deciphering the molecules and mechanisms that an egg uses to “rejuvenate” nuclei. We know a lot about nuclear transfer, but the question remains of how to regulate and control the most efficient way to reprogram the nucleus. Although both Gurdon’s (nuclear reprogramming) and Yamanaka’s (iPS) technologies can generate living animals, we do not know the molecular mechanisms underlying these two strategies. The potential of iPS cell technology in biology and medicine is enormous; however, it is still in its infancy, and there are many challenges to overcome before various applications can be used successfully. We still need to understand the components of oocytes or eggs used to depress
somatic gene expression and discover the direct cell-type switches by over-
expressed transcription factors. It is also important to identify the basis for the
stability of the differentiated state of cells, which will help us to understand how
egg-reprogramming factors operate. Finally, mapping of the “embryome” is a
necessity, and it looks as though it will become available soon, which will help us
to understand the intricacies and epigenetic imprints of embryos.

Many people have contributed to making our involvement in this project possi-
ble. We thank our teachers for their excellent teaching, guidance, and mentorship,
which helped us to bring this educational enterprise. We are extremely thankful to
all of the contributors to this book, without whose commitment this book would not
have been possible. Many people have had a hand in the preparation of this book.
Each chapter has been passed back and forth between the authors for criticism and
revision; hence each chapter represents a joint composition. We thank our readers,
who have made our hours putting together this volume worth it. We are indebted to
the staff of Springer Science + Business Media (Humana Press), and in particular
Mindy Okura-Marszycki and Vindra Dass for their generosity in giving time and
effort throughout the editing of this book. This book is dedicated to memory of my
late friend, Prof. Xiangzhong (Jerry) Yang of the University of Connecticut, Storrs,
who was the first to clone a cow (Amy, the calf) and a strong proponent of stem cell
research here in US and China. This book is also dedicated to memory of my late
friend, Prof. C.M. Habibullah of the Deccan College of Medical Sciences, India,
who was a strong supporter of stem cell research in India. We especially thank Prof.
John Gurdon, a researcher of great distinction, for his kindness and support in writ-
ing the Foreword to this book. Last, but not least, we thank Shyamala Appasani for
her understanding and cooperation during the development of this book.

This book is the first joint project of father and son. A portion of the royalties
will be contributed to the Dr. Appasani Foundation, a nonprofit organization
devoted to bringing social change through the education of youth in developing
nations.

Waltham, MA
Krishnarao Appasani

Boston, MA
Raghu K. Appasani
I am very grateful to Krishnarao and Raghu Appasani for preparing this volume on
the massively expanding fields of stem cells and regenerative medicine and for
inviting me to offer a few introductory comments.

The prospect of being able to rejuvenate cell types of almost any kind from
easily accessible cells of an adult makes it realistic to envisage cell replacement.
Most important, this possibility would provide a patient with new cells of their own
genetic type, thereby avoiding the necessity of immunosuppression, as would be
required for any cells derived from any other individual, except an identical twin.
The great interest in this field has been enormously stimulated by the recent discov-
ery of induced pluripotency stem cells but has depended on several much earlier
discoveries, most notably on that of embryonic stem cells.

There has been something of a tidal wave of interest in stem cells and regenera-
tive medicine as researchers all over the world become active in it. Almost every
day there are new papers published on various aspects of pluripotency, and it would
be hard, even for those intimately involved in experimental work of this kind, to
keep up to date with every advance. It is therefore very valuable to have a volume
of 36 contributions summarizing the current status of progress in the various fields
that contribute to regenerative medicine. Krishnarao and Raghu Appasani have
assembled the contributing chapters into six main areas, ranging from stem cell
biology through tissue engineering and therapeutic possibilities. The component
chapters will be valuable not only to those who are experimentally active in an
aspect of regenerative medicine, but also to those concerned with potential thera-
peutic applications. This volume also contains a valuable historical perspective by
the Appasanis explaining key events in the development of this field over the last
150 years.

Although there is great enthusiasm for the eventual therapeutic value of work in
this field for human health, scientists are very cautious about the time scale of
human benefit. Bone marrow cells have been of great clinical value for a number
of years. However, there is a long way to go before the brain and heart, to take two
examples, can benefit from laboratory-created stem cells. It is indeed remarkable
that beating heart cells or dopamine-secreting brain cells can now be derived from
human skin and can be proliferated in the laboratory. However, substantial advances
will be needed for it to be possible to integrate these laboratory-grown cells into

Foreword
organs or tissues of living individuals and to arrange for these new cells to continue their newly acquired activity once transplanted into a patient. It is unlikely that a complex organ, often consisting of many different cell types, will soon be able to be constructed in the laboratory. The number of cells required for human therapy is also of concern, since a human heart or brain consists of more than 1 million million (10^{12}) cells. On the other hand, some cells make their contribution by secreting products or by providing critical neural connections, and even 10,000 cells of one kind could be valuable, as, for example, in the retina of the eye. I believe there is a cautious optimism in this field. It is generally true that once scientists find out how to achieve a desired result to a small extent, it is only a question of time before this advance is made to work enormously more efficiently.

My last comment concerns the reliability and safety of stem cells in regenerative medicine. There is understandable concern that any stem cells used for therapeutic purposes should be completely free of potential cancer cells or potentially harmful viruses. However, I submit that a situation might be reached where, even though one patient may suffer, more than 99.9% of other patients may derive enormous benefit. I hope that the fear of an occasional harmful replacement cell will not discourage continuing attempts to derive replacement cells that could be of enormous therapeutic value for a great number of other patients.

Cambridge, UK

John. B. Gurdon
Contents

Part I Stem Cell Biology

Introduction to Stem Cells and Regenerative Medicine

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krishnarao Appasani and Raghu K. Appasani</td>
<td>3</td>
</tr>
</tbody>
</table>

Embryonic Stem Cells: Discovery, Development, and Current Trends

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elias Theodorou and Michael Snyder</td>
<td>19</td>
</tr>
</tbody>
</table>

Bmi1 in Self-Renewal and Homeostasis of Pancreas

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugenio Sangiorgi and Mario Capecchi</td>
<td>45</td>
</tr>
</tbody>
</table>

Cancer Stem Cells in Solid Tumors

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elodie du Potet, Lauren Cameron, Nagy A. Habib, and Natasa Levicar</td>
<td>59</td>
</tr>
</tbody>
</table>

Adipose-Derived Stem Cells and Skeletal Muscle Repair

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claude A. Dechesne, Didier F. Pisani, Sébastien Goudenege, and Christian Dani</td>
<td>77</td>
</tr>
</tbody>
</table>

Regeneration of Sensory Cells of Adult Mammalian Inner Ear

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dongguang Wei and Ebenezer N. Yamoah</td>
<td>89</td>
</tr>
</tbody>
</table>

Stem Cells and Their Use in Skeletal Tissue Repair

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Baumgartner, Vuk Savkovic, Susanne Trettner, Colette Martin, and Nicole I. zur Nieden</td>
<td>103</td>
</tr>
</tbody>
</table>

Part II Epigenetic and microRNA Regulation in Stem Cells

Epigenetic Identity in Cancer Stem Cells

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maria Ouzounova, Hector Hernandez-Vargas, and Zdenko Herceg</td>
<td>127</td>
</tr>
</tbody>
</table>

Function of MicroRNA-145 in Human Embryonic Stem Cell Pluripotency

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na Xu, and Kenneth S. Kosik</td>
<td>141</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Mesenchymal Stem Cells for Liver Regeneration</td>
<td>155</td>
</tr>
<tr>
<td>Tom K. Kuo, Yueh-Hsin Ping, and Oscar K. Lee</td>
<td></td>
</tr>
<tr>
<td>The Role of Time-Lapse Microscopy in Stem Cell Research and Therapy</td>
<td>181</td>
</tr>
<tr>
<td>Kevin E. Loewke and Renee A. Reijo Pera</td>
<td></td>
</tr>
<tr>
<td>Part III Stem Cells for Therapeutic Applications</td>
<td></td>
</tr>
<tr>
<td>Therapeutic Applications of Mesenchymal Stem/Multipotent Stromal Cells</td>
<td>195</td>
</tr>
<tr>
<td>Weian Zhao, Debanjan Sarkar, James Ankrum, Sean Hall, Weili Loh, Wei Suong Teo, and Jeffrey M. Karp</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal Stem Cells</td>
<td>219</td>
</tr>
<tr>
<td>N. Parveen, Aleem A. Khan, M. Aejaz Habeeb, and C. M. Habibullah</td>
<td></td>
</tr>
<tr>
<td>Lung Epithelial Stem Cells</td>
<td>227</td>
</tr>
<tr>
<td>Magnus Karl Magnusson, Olafur Baldursson, and Thorarinn Gudjonsson</td>
<td></td>
</tr>
<tr>
<td>Placental-Derived Stem Cells: Potential Clinical Applications</td>
<td>243</td>
</tr>
<tr>
<td>Sean Murphy, Euan Wallace, and Graham Jenkin</td>
<td></td>
</tr>
<tr>
<td>Bone Marrow Cell Therapy for Acute Myocardial Infarction: A Clinical Trial Review</td>
<td>265</td>
</tr>
<tr>
<td>Franca S. Angeli and Yerem Yeghiazarians</td>
<td></td>
</tr>
<tr>
<td>Stem Cell Transplantation to the Heart</td>
<td>279</td>
</tr>
<tr>
<td>Michael J. Mann</td>
<td></td>
</tr>
<tr>
<td>Adult Neural Progenitor Cells and Cell Replacement Therapy for Huntington Disease</td>
<td>299</td>
</tr>
<tr>
<td>Bronwen Connor</td>
<td></td>
</tr>
<tr>
<td>Migration of Transplanted Neural Stem Cells in Experimental Models of Neurodegenerative Diseases</td>
<td>315</td>
</tr>
<tr>
<td>Nathaniel W. Hartman, Laura B. Grabel, and Janice R. Naegle</td>
<td></td>
</tr>
<tr>
<td>Prospects for Neural Stem Cell Therapy of Alzheimer Disease</td>
<td>337</td>
</tr>
<tr>
<td>Thorsten Gorba, Sarah Harper, and P. Joseph Mee</td>
<td></td>
</tr>
<tr>
<td>Part IV Nuclear Reprogramming and Induced Pluripotent Stem Cells</td>
<td></td>
</tr>
<tr>
<td>Nuclear Transfer Embryonic Stem Cells as a New Tool for Basic Biology</td>
<td>351</td>
</tr>
<tr>
<td>Sayaka Wakayama, Eiji Mizutani, and Teruhiko Wakayama</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Pluripotent Stem Cells in Reproductive Medicine:
Formation of the Human Germ Line in Vitro .. 371
Sofia Gkountela, Anne Lindgren, and Amander T. Clark

Prospects for Induced Pluripotent Stem Cell Therapy for Diabetes 387
Robert J. Drummond, James A. Ross, and P. Joseph Mee

Keratinocyte-Induced Pluripotent Stem Cells:
From Hair to Where? ... 399
Trond Aasen and Juan Carlos Izpisúa Belmonte

Generation and Characterization of Induced Pluripotent Stem Cells from Pig .. 413
Toshihiko Ezashi, Bhanu Prakash V. L. Telugu, and R. Michael Roberts

Induced Pluripotent Stem Cells: On the Road Toward Clinical Applications ... 427
Fanyi Zeng and Qi Zhou

Direct Reprogramming of Human Neural Stem Cells by the Single Transcription Factor OCT4 .. 439
Jeong Beom Kim, Holm Zaehres, and Hans R. Schölter

Part V Tissue Engineering

Stem Cells and Biomaterials: The Tissue Engineering Approach 451
Stefania Antonini, Angelo Vescovi, and Fabrizio Gelain

Microtechnology for Stem Cell Culture .. 465
Elena Serena, Elisa Cimetta, Camilla Luni, and Nicola Elvassore

Using Lab-on-a-Chip Technologies for Stem Cell Biology 483
Kshitiz Gupta, Deok-Ho Kim, David Ellison, Christopher Smith, and Andre Levchenko

The Development of Small Molecules and Growth Supplements to Control the Differentiation of Stem Cells and the Formation of Neural Tissues .. 499
Victoria B. Christie, Daniel J. Maltman, Andy Whiting, Todd B. Marder, and Stefan A. Przyborski

Long-Term Propagation of Neural Stem Cells: Focus on Three-Dimensional Culture Systems and Mitogenic Factors 515
Rikke K. Andersen, Jens Zimmer, and Morten Meyer
Part VI Regenerative Medicine

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem Cells and Regenerative Medicine in Urology</td>
<td>541</td>
</tr>
<tr>
<td>Anthony Atala</td>
<td></td>
</tr>
<tr>
<td>Muscle-Derived Stem Cells: A Model for Stem Cell Therapy in Regenerative Medicine</td>
<td>565</td>
</tr>
<tr>
<td>Burhan Gharaibeh, Lauren Drowley, and Johnny Huard</td>
<td></td>
</tr>
<tr>
<td>Regenerative Strategies for Cardiac Disease</td>
<td>579</td>
</tr>
<tr>
<td>Xiaojing Huang, James Oh, and Sean M. Wu</td>
<td></td>
</tr>
<tr>
<td>Collecting, Processing, Banking, and Using Cord Blood Stem Cells for Regenerative Medicine</td>
<td>595</td>
</tr>
<tr>
<td>David T. Harris</td>
<td></td>
</tr>
</tbody>
</table>

Index | 615 |
Contributors

Trond Aasen, PhD
Institut de Recerca Hospital Vall d’Hebron, 08035 Barcelona, Spain
and
Pathology Department Fundació Institut de Recerca Hospital Vall d’ Hebron,
08035 Barcelona, Spain

Rikke K. Andersen
Department of Anatomy and Neurobiology Institute of Medical Biology,
University of Southern Denmark, Odense C, DK-5000, Denmark

Franca S. Angeli, MD
Division of Cardiology, University of California at San Francisco Medical Center,
505 Parnassus Avenue, San Francisco, CA 94143-0124, USA

James Ankrum
Harvard-MIT Division of Health Sciences and Technology,
Department of Medicine Brigham and Women’s Hospital, Harvard Medical School,
and Harvard Stem Cell Institute, 65 Landsdowne Street PRB325, Cambridge,
MA 02139, USA

Stefania Antonini
Center for Nanomedicine and Tissue Engineering and Department of
Biotechnology and Biosciences, University of Milan-Bicocca, A.O. Ospedale
Niguarda Ca’ Granda, Milan 20126, Italy

Krishnarao Appasani, PhD, MBA
Gene Expression Systems, Inc., P.O. Box 540170, Waltham,
MA 02454, USA

Anthony Atala, MD
Wake Forest Institute for Regenerative Medicine and Department of Urology
Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
Olafur Baldursson
Department of Pulmonary Medicine, Landspitali University Hospital, Reykjavik, Iceland

Laura Baumgartner
Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig, 04103, Germany

Juan Carlos Izpisúa Belmonte, PhD
Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, Barcelona, 08003, Spain
and
Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA

Lauren Cameron
Department of Surgery, Imperial College of London, Hammersmith Campus, Du Cane Road, London W12 ONN, UK

Mario R. Capecchi, PhD
Distinguished Professor of Human Genetics & Biology Investigator, Howard Hughes Medical Institute, University of Utah School of Medicine, 15 North 2030 East, Room 5440, Salt Lake City, UT 84112, USA

Victoria B. Christie
School of Biological and Biomedical Sciences, Durham University and Reinnervate Limited, Durham, DH1 3LE, UK

Elisa Cimetta
Department of Chemical Engineering, University of Padua, Via Marzolo 9, Padova, 35131, Italy

Amander T. Clark, PhD
Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA

Bronwen Connor, PhD
Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, FMHS, University of Auckland, Private Bag 92019, Auckland, New Zealand

Christian Dani, PhD
Institute of Developmental Biology and Cancer, University of Nice Sophia-Antipolis, CNRS, UMR 6543, Nice, France
Claude A. Dechesne
Institute of Developmental Biology and Cancer, University of Nice Sophia-Antipolis, CNRS, UMR 6543, Nice, France

Lauren Drowley, PhD
Stem Cell Research Center, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219, USA

Robert J. Drummond
Tissue Injury and Repair Group, School of Clinical Sciences and Community Health, University of Edinburgh Room FU501, Chancellors Building, 49 Little France Crescent, Edinburgh, Scotland, UK

Elodie du Potet
Department of Surgery, Imperial College of London, Hammersmith Campus, Du Cane Road, London W12 ONN, UK

David Ellison
Department of Biomedical Engineering, Johns Hopkins University Clark Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA

Nicola Elvassore, PhD
Department of Chemical Engineering, University of Padua and Venetian Institute of Molecular Medicine, Via Marzolo 9, 35131, Padova, Italy

Toshihiko Ezashi, PhD
Division of Animal Sciences, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310, USA

Fabrizio Gelain, PhD
Center for Nanomedicine and Tissue Engineering, and Department of Biotechnology and Biosciences, University of Milan-Bicocca, A.O. Ospedale Niguarda Ca’ Granda, 20126 Milan, Italy

Burhan Gharabeh, PhD
Stem Cell Research Center, University of Pittsburgh Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219, USA

Sofia Gkountela, PhD
Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, College of Letters and Science, University of California Los Angeles, Los Angeles, CA 90095, USA
Thorsten Gorba
Stem Cell Sciences UK Ltd., Minerva Building 250, Babraham Research Campus, Cambridge, CB22 3AT, UK

Sébastien Goudenège
Institute of Developmental Biology and Cancer, University of Nice Sophia-Antipolis, CNRS, UMR6543, Nice, France

Laura B. Grabel, PhD,
Lauren B. Dachs Professor of Science in Society, Department of Biology, Hall-Atwater Labs, Wesleyan University, Middletown, CT 06459, USA

Thorarinn Gudjonsson, PhD
Stem Cell Research Unit, Department of Anatomy, Faculty of Medicine, University of Iceland and Department of Laboratory Hematology, Landspitali – University Hospital, Reykjavik, Iceland

Kshitiz Gupta
Department of Biomedical Engineering, Johns Hopkins University, Clark Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA

John Gurdon, DPhil, FRS
Emeritus Professor, Gurdon Institute, University of Cambridge, Cambridge, UK

M. Aejaz Habeeb
Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, A.P., India

Nagy A. Habib, MBCh, PhD, FRCS
Department of Surgery, Imperial College of London, Hammersmith Campus, Du Cane Road, London W12 ONN, UK

C. M. Habibullah, MD (deceased)
Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, A.P. India

Sean Hall
Division of Newborn Medicine and Pulmonary and Critical Care, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA

Sarah Harper
Stem Cell Sciences UK Ltd., Minerva Building 250, Babraham Research Campus, Cambridge, CB22 3AT, UK
Contributors

David T. Harris, PhD
Department of Immunobiology Organization, University of Arizona,
1656 E. Mabel, MRB 221, Tucson, AZ 85724, USA

Nathaniel W. Hartman
Department of Biology Wesleyan University, Middletown, CT 06459, USA

Zdenko Herceg, PhD
Epigenetics Group Leader, International Agency for Research on Cancer,
150 cours Albert-Thomas Lyon, Cedex 08, 69372, France

Xiaojing Huang
Division of Cardiology, Cardiovascular Research Center,
Massachusetts General Hospital, Harvard Medical School CPZN 3224,
Simches Building, 185 Cambridge Street, Boston, MA 02114 USA

Johnny Huard, PhD
Department of Orthopaedic Surgery and Molecular Genetics and Biochemistry,
and Stem Cell Research Center, University of Pittsburgh,
Pittsburgh, PA 15219, USA

Graham Jenkin, PhD
The Ritchie Center, Monash Institute of Medical Research,
Faculty of Medicine, Nursing and Health Sciences, Monash University,
Clayton, VIC 3168, Australia

Jeffrey M. Karp, MD, PhD
Department of Medicine, Harvard-MIT Division of Health Sciences
and Technology, Brigham and Women’s Hospital, Harvard Medical School
and Harvard Stem Cell Institute, 65 Landsdowne Street,
Cambridge, MA 02139, USA

Aleem A. Khan
Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences,
Kanchanbagh, Hyderabad 500058, A.P. India

Deok-Ho Kim, PhD
Department of Biomedical Engineering, Johns Hopkins University,
207 Clark Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA

Jeong Beom Kim
Department of Cell and Developmental Biology, Max Planck Institute for
Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, NRW, Germany
Kenneth S. Kosik, MD
Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA

Tom K. Kuo
Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan

Oscar K. Lee, MD, PhD
Department of Medical Research and Education, Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

Andre Levchenko, PhD
Department of Biomedical Engineering, Johns Hopkins University, 208 Clark Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA

Natasa Levicar
Department of Surgery, Imperial College of London, Hammersmith Campus,
Du Cane Road, London, W12 ONN, UK

Anne Lindgren, PhD
Department of Molecular Cell and Developmental Biology, College of Letters and Science, University of California at Los Angeles, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA

Kevin E. Loewke
Department of Mechanical Engineering, Stanford University, Auxogyn, Inc.,
1490 O’Brien Drive, Menlo Park, CA 94025, USA

Weili Loh
Harvard-MIT Division of Health Sciences and Technology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School and Harvard Stem Cell Institute, 65 Landsdowne Street PRB325, Cambridge, MA 02139, USA

Camilla Luni
Department of Chemical Engineering, University of Padua, Via Marzolo 9, Padova,
35131, Italy

Magnus Karl Magnusson
Stem Cell Research Unit, Biomedical Center, University of Iceland, Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
Daniel J. Maltman
School of Biological and Biomedical Sciences, Durham University and
Reinnervate Limited, Durham, DH1 3LE, UK

Michael J. Mann, MD
Division of Cardiothoracic Surgery, Director, Cardiothoracic Translational
Research Laboratory, University of California at Director, San Francisco,
CA, USA

Todd B. Marder
Department of Chemistry, Durham University, Durham, DH1 3LE, UK

Colette Martin
Department of Cell Biology and Neuroscience and Stem Cell Center, University of
California Riverside, Riverside, CA 92521, USA

P. Joseph Mee, PhD
Stem Cell Sciences PLC, Minerva Building 250, Babraham Research Campus,
Cambridge, CB22 3AT, UK

Morten Meyer, PhD
Department of Neurobiology Research, Institute of Molecular Medicine,
University of Southern Denmark, J.B. Winslows Vej 21, DK-5000
Odense C, Denmark

Sean Murphy, PhD
Faculty of Medicine, Nursing Health Sciences, Monash Immunology and Stem
Cell Laboratories, Monash University, Wellington Road, Clayton, Victoria 3800,
Australia

Eiji Mizutani
Laboratory for Genomic Reprogramming, RIKEN Center for Developmental
Biology 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

Janice R. Naegele, PhD
Department of Biology, Hall-Atwater Labs,
Wesleyan University, Middletown, CT 06459, USA

James Oh
Division of Cardiology, Cardiovascular Research Center, Massachusetts General
Hospital, Harvard Medical School CPZN 3224, Simches Building, 185 Cambridge
Street, Boston, MA 02114, USA
Maria Ouzounova
Epigenetics Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, Lyon cedex 08, 69372 France

Yueh-Hsin Ping, PhD
Stem Cell Research Center and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan

Didier F. Pisani
Institute of Developmental Biology and Cancer, University of Nice Sophia-Antipolis, CNRS, UMR6543, Nice, France

N. Parveen
Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500058, A.P., India

Stefan A. Przyborski, PhD
School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK and Reinnervate Limited, Durham, DH1 3HP, UK

Renee A. Reijo Pera, PhD
Professor, Center for Human Embryonic Stem Cell Research and Education, Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304-5542, USA

Michael R. Roberts, PhD
Emeritus Professor, Department of Animal Sciences, 240h, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E. Rollins Street, Columbia, MO 65211-7310, USA

James A. Ross
Tissue Injury and Repair Group, School of Clinical Sciences and Community Health, University of Edinburgh, Room FU501, Chancellors Building, 49 Little France Crescent, Edinburgh, Scotland, UK

Eugenio Sangiorgi, MD
Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy

Debanjan Sarkar
Harvard-MIT Division of Health Sciences and Technology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School and Harvard Stem Cell Institute, 65 Landsdowne Street PRB325, Cambridge, MA 02139, USA
Vuk Savkovic
Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig, 04103, Germany

Hans R. Schöler, PhD
Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, NRW, Germany

Elena Serena
Department of Chemical Engineering, University of Padua and Venetian Institute of Molecular Medicine, Via Marzolo 9, Padova, 35131, Italy

Christopher Smith
Department of Biomedical Engineering, Johns Hopkins University, Clark Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA

Michael Snyder, PhD
Department of Genetics, Stanford University School of Medicine, MC: 5120, 300 Pasteur Dr., M-344, Stanford, CA 94305-2200, USA

Bhanu Prakash Telugu, PhD
Department of Animal Sciences, 240h, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E. Rollins Street, Columbia, MO 65211-7310, USA

Wei Suong Teo
Department of Medicine, Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital, Harvard Medical School and Harvard Stem Cell Institute, 65 Landsdowne Street PRB325, Cambridge, MA 02139, USA

Elias Theodorou
Molecular, Cellular and Developmental Biology Department, Yale University, P.O. Box 208103, New Haven, CT 06511, USA

Susanne Trettner
Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig 04103, Germany

Hector Hernandez Vargas
Epigenetics Group Leader, International Agency for Research on Cancer, 150 cours Albert-Thomas, Lyon cedex 08, 69372, France
Angelo Vescovi
Center for Nanomedicine and Tissue Engineering and Department of Biotechnology and Biosciences, University of Milan-Bicocca A.O. Ospedale Niguarda Ca’ Granda, Milan 20126, Italy

Sayaka Wakayama
Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

Teruhiko Wakayama, PhD
Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

Euan Wallace, MD
Faculty of Medicine, Nursing and Health Sciences, Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

Dongguang Wei, PhD
Department of Anesthesiology and Pain Medicine, Center for Neuroscience, University of California at Davis, 1544 Newton Court, Davis, CA 95618, USA

Andy Whiting
Department of Chemistry, Durham University, Durham, DH1 3LE, UK

Sean M. Wu, MD, PhD
Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Harvard Stem Cell Institute, Simches Building, CPZN 3224 185 Cambridge Street, Boston, MA 02114, USA

Na Xu, PhD
Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA

Ebenezer N. Yamoah, PhD
Department of Anesthesiology and Pain Medicine, Center for Neuroscience, Program in Communication Science, University of California at Davis, 1544 Newton Court, Davis, CA 95618, USA

Yerem Yeghiazarians, MD
Division of Cardiology, Cardiac Stem Cell Translational Development Program, University of California at San Francisco Medical Center, 505 Parnassus Avenue, San Francisco, CA 94143-0124, USA
Holm Zaehres
Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, NRW, Germany

Fanyi Zeng, MD, PhD
Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, P.R. China

Weian Zhao, PhD
Department of Medicine, Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital, Harvard Medical School and Harvard Stem Cell Institute, 65 Landsdowne Street, Cambridge, MA 02139, USA

Qi Zhou
Shanghai Institute of Medical Genetics, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, 280 S. ChongQing Road, Bldg 5, Room 707, Shanghai 200025, China

Jens Zimmer
Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Odense C, DK-5000, Denmark

Nicole I. zur Nieden, PhD
Department of Cell Biology, and Neuroscience and Stem Cell Center, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
and
Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany