Note from the Editor-in-Chief

All books in this series illustrate point-of-care testing and critically evaluate the potential of antioxidant supplementation in various medical disorders associated with oxidative stress. Future volumes will be updated as warranted by emerging new technology, or from studies reporting clinical trials.

Donald Armstrong
Editor-in-Chief
Heinrich Sauer · Ajay M. Shah · Francisco R.M. Laurindo
Editors

Studies on Cardiovascular Disorders

Humana Press
Preface

The role of reactive oxygen species (ROS) in the cardiovascular system is Janus-faced. Whereas low concentrations of ROS are involved in variety of physiological signalling events, oxidative stress resulting from deregulated overproduction of ROS and/or impaired antioxidant defences contributes to cardiovascular disease. The actions of ROS in the cardiovascular system are a fascinating topic, not only for the basic science researcher but also for the clinician who is interested in seeking new therapies for his patients suffering from cardiovascular disease. The current book provides a comprehensive overview of the molecular mechanisms and pathophysiological settings in which chronic and detrimental oxidative stress arises within the heart and vasculature. The book also considers currently discussed strategies in avoiding chronic redox stress resulting from exposure to risk factors or various cardiovascular interventions.

The series starts with an overview by Denise de Castro Fernandes, Diego Bonatto and Francisco Laurindo of redox signaling models that could underlie the development of redox-associated cardiovascular disorders. The interactions of proteins within signalling cascades with ROS and the regulation of such interactions by the anti-oxidative capacity of the cell are discussed. Rebecca Charles, Joseph Burgoyne and Philip Eaton report on redox-mediated modifications of proteins under physiological and pathophysiological conditions and the variety of post-translational oxidative modifications that explain redox sensing and signal transduction by proteins at the molecular level.

ROS are generated during embryogenesis and may be involved in the proper development of the cardiovascular system. This is underscored by the increasing evidence that ROS regulate the cardiomyogenesis and vascular differentiation processes of stem cells, which mimic essential events occurring during normal embryogenesis of the cardiovascular system. Heinrich Sauer and Maria Wartenberg outline the signalling pathways in cardiovascular development during embryogenesis and their meaning in differentiation processes of resident cardiac stem cells and embryonic stem cells derived from the inner cell mass of blastocysts.

Sensory nerves act via perivascular neuronal networks to release potent vasoactive neuropeptides that work in combination with the autonomic nervous system to regulate both physiological vascular tone and pathophysiological disease processes. Sensory nerve endings can be in contact with vascular smooth muscle
cells and also in intimate contact with endothelial cells. In the article by Rabea Graepel, Jennifer Bodkin and Susan Brain, current knowledge of the sensory nervous system in terms of its influence on the cardiovascular system and the established and putative links between the sensory nervous system and ROS generation relevant to the cardiovascular system are outlined.

A major source of ROS is the mitochondrial respiratory chain where ROS are generated in the electron transport chain complexes I and III. Mitochondria-derived ROS are known to participate in cardiac reperfusion injury but paradoxically – as outlined in the article of Ariel Cardoso, Bruno Queliconi and Alicia Kowaltowski – also contribute to cardioprotection in myocardial pre- and postconditioning. Mitochondrial ROS generation is closely coupled to coenzyme Q9/Q10, which acts as an electron carrier between the nicotinamide adenine dinucleotide (NADH) and succinate dehydrogenases and the cytochrome system. The article by Samarjit Das, Somak Das and Dipak Das presents the intriguing hypothesis that increased ROS generation in mitochondria with abundance of CoQ could represent a novel mechanism of cardioprotection through the potentiation of redox signaling, thereby preventing oxidative damage and dysfunction of mitochondria under excess ROS-generating conditions. Furthermore, ROS derived from mitochondria are involved in homocysteine (HCY)-related cardiovascular diseases. As pointed out in the study of Karni Moshal and coworkers, HCY causes activation and the mitochondrial translocation of calpain-1 (calcium-dependent cysteine protease) thereby increasing intramitochondrial oxidative stress and leading to the induction of MMP-9. In their study, the authors summarize current knowledge on hydrogen sulphide in myocardial protection as well as the role that HCY-induced oxidative stress in the mitochondria plays during the regulation of myocyte contractility.

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are another important source of ROS in the cardiovascular system that have been shown to be involved in many human diseases, such as metabolic syndrome, hypertension, diabetes, left ventricular hypertrophy, heart failure, renal disease, atherosclerosis, and cerebrovascular disease. Tomasz Guzik reviews the important vascular roles of these complex enzymes in human circulation. Guillermo Zalba and Javier Diez summarize the experimental evidence supporting a pathophysiological role for polymorphisms in the p22phox gene (the CYBA gene), some of which are able to influence NADPH oxidase gene expression and activity in the context of cardiovascular diseases. The theme of genetic variation is also the subject of the article by Christian Delles and Anna Dominiczak, who report on strategies to unravel the genetics of redox-related cardiovascular diseases and describe the interactions of redox-regulated genes and the environment. Timo Kahles, Sabine Heumüller and Ralf Brandes focus their article on the role of NADPH oxidase in blood-brain barrier dysfunction, which occurs during ischemic stroke as well as during ischemia/reperfusion.

The likelihood of adverse cardiovascular events has been associated with risk factors related to a “typical western lifestyle” such as physical inactivity, obesity and smoking, which all appear to be associated with oxidative stress. The link between smoking and increased oxidative stress is reviewed by David Bernhard.
Elevated levels of ROS have also been linked with increasing age and vascular aging (reviewed by Anna Csiszar and Zoltan Ungvari), heart failure, diabetes mellitus (reviewed by Divya Gupta, Kathy Griendling and Robert Taylor), coronary artery disease, hypertension (reviewed by Rhian Touyz, Andrea Chignalia, and Mona Sedeek), as well as with relatively rare cardiac diseases such as peripartum cardiomyopathy, which has been associated with increased oxidative stress during pregnancy (reviewed by Denise Hilfiker-Kleiner, Arash Haghiokia and Andres Hilfiker). However, oxidative stress not only arises in the sequence of cardiovascular diseases but also in response to cardiovascular interventions such as coronary angiography (reviewed by Raymond Farah) or during cardiac transplantation (reviewed by Galen Pieper and Ashwani Khanna). Interestingly, conditions of chronically elevated ROS within the heart are associated with atrial fibrillation, which among other problems may cause stroke and peripheral embolization (reviewed by Ali Sovari and Samuel Dudley).

Acute myocardial infarction due to atherosclerotic coronary artery disease often results in remodeling responses of the myocardium that may culminate in congestive heart failure. Yao Sun describes the current knowledge on oxidative stress arising during cardiac infarction and its role in influencing the severity of cellular apoptosis, the inflammation process and development of hypertrophy. Min Zhang, Alex Sirker and Ajay Shah report on the process of cardiac remodelling with an emphasis on cardiomyocyte hypertrophy, apoptosis, interstitial fibrosis, contractile dysfunction and chamber dilatation through specific modulation of redox-sensitive signalling pathways that alter gene and protein expression and function. A deepened insight into cardiovascular fibrosis is provided by the article by Subramaniam Pennathur, Louise Hecker and Victor Thanickal, who describe the role of NADPH oxidases in the initiation of fibrotic processes and outline therapeutic strategies to inhibit oxidative stress in cardiovascular fibrosis.

Cardiovascular disease is not uniformly distributed between the sexes. Risk factors specific to women include parity, oophorectomy, pre-eclampsia and menopause. In the article by Manuela Gago-Dominguez, Xuejuan Jiang, and Jose Esteban Castelao, the oxidation hypothesis of reproductive factor-cardiovascular disease association is developed, which is based on the observation that pregnant, oophorectomized, and postmenopausal women exhibit higher levels of lipid peroxidation than nonpregnant, nonoophorectomized and premenopausal women, respectively. The authors propose that the increased levels of lipid peroxidation during these states are responsible, at least in part, for the increased risk of cardiovascular disease in women.

The well-established connection between cardiovascular disease and oxidative stress has led to the investigation of various antioxidative strategies for patient treatment. The most natural way to cope with cardiovascular disease is perhaps by prevention. Alfonso Giovanni, and Claudio Napoli report on the French paradox of cardiovascular disease and consider the potential beneficial effects of the Mediterranean diet, which could be related to antioxidants contained in red wine or vegetable, fruit and olive oil. During recent years, novel synthetic antioxidants such as hybrid compounds designed to improve the efficacy of natural
antioxidants have been developed. *Gloria López* and *Homero Rubbo* describe novel hybrid antioxidants (tocopherol analogs-nitric oxide donors) that share nitric oxide-releasing properties and LDL incorporation capacity, demonstrating the importance of this site-specific release of nitric oxide in the cascade of events involved in the inhibition of LDL oxidation. This may offer novel approaches for the prevention of atherosclerosis and related disorders that involve reactive oxygen and nitrogen species, although this remains to be demonstrated in clinical trials. Alternative approaches could utilize the antioxidative capacity of the cell, e.g. thioredoxin (TRX), which catalyzes the conversion of disulfide oxidized proteins to their thiol-reduced forms, and has been shown to exert protective effects when intravenously administered in laboratory animals (reviewed by *Bradford Berk*). A further substance produced naturally in the body is the pineal gland hormone melatonin, which besides regulating circadian rhythms is a strong antioxidant and – as elaborated on by *Amanda Lochner* – ameliorates tissue damage in ischaemia/reperfusion in a number of organs. A wealth of recent studies demonstrate that the physiological stimulus of endurance exercise is overwhelmingly cardioprotective. In their article, *Karyn Hamilton* and *John Quindry* focus their discussion on the role of endogenous antioxidants in mediating protection and secondarily on the protective mechanisms peripheral to redox control. The overall benefits observed with the lipid-lowering HMG CoA reductase inhibitors (statins) appear to be greater than might be expected from changes in lipid levels alone. *Oliver Adam* and *Ulrich Laufs* review the current knowledge on the action of statins regarding endothelial NO synthase (eNOS), endothelin, free oxygen radicals, MHC-II, the protein kinase Akt and metalloproteinases.

The present series of articles on oxidative stress in clinical practice summarizes the current knowledge in a rapidly evolving field. Its intention is both to provide a mechanistic overview of the ways in which oxidative stress impacts cardiovascular disease and to consider potential therapeutic options to target such pathways. Although large clinical trials of “simple” antioxidant approaches, such as vitamin C and E, have not demonstrated significant benefit for cardiovascular end points, the data discussed in this book should make quite clear that such an approach is too simplistic. Understanding the complexity of the cellular redox system may in the future allow the development of better-targeted interventions to facilitate the path of patients from disease back to health.
1 The Evolving Concept of Oxidative Stress 1
Denise de Castro Fernandes, Diego Bonatto, and Francisco R.M. Laurindo

2 Mechanisms of Redox Signaling in Cardiovascular Disease 43
Rebecca L. Charles, Joseph R. Burgoyne, and Philip Eaton

3 Reactive Oxygen and Nitrogen Species in Cardiovascular Differentiation of Stem Cells 61
Heinrich Sauer and Maria Wartenberg

4 Reactive Oxygen Species (ROS) and the Sensory Neurovascular Component 87
Rabea Graepel, Jennifer Victoria Bodkin, and Susan Diana Brain

5 Mitochondrial Reactive Oxygen Species in Myocardial Pre- and Postconditioning 109
Ariel R. Cardoso, Bruno B. Queliconi, and Alicia J. Kowaltowski

6 Coenzyme Q9/Q10 and the Healthy Heart 125
Samarjit Das, Somak Das, and Dipak K. Das

7 Oxidative and Proteolytic Stress in Homocysteine-Associated Cardiovascular Diseases 139
Karni S. Moshal, Munish Kumar, Neetu Tyagi, Paras Kumar Mishra, Saumi Kundu, and Suresh C. Tyagi

8 Functional Studies of NADPH Oxidases in Human Vasculature 149
Tomasz J. Guzik

9 Relationship of the CYBA Gene Polymorphisms with Oxidative Stress and Cardiovascular Risk 169
Guillermo Zalba and Javier Diez
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Redox-Related Genetic Markers of Cardiovascular Diseases</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Christian Delles and Anna F. Dominiczak</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NADPH Oxidases and Blood-Brain Barrier Dysfunction in Stroke</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Timo Kahles, Sabine Heumüller, and Ralf P. Brandes</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Smoking-Induced Oxidative Stress in the Pathogenesis of Cardiovascular Diseases</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>David Bernhard</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Oxidative Stress in Vascular Aging</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Anna Csiszar and Zoltan Ungvari</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Oxidative Stress and Cardiovascular Disease in Diabetes Mellitus</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Divya Gupta, Kathy K. Griendling, and W. Robert Taylor</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Reactive Oxygen Species, Oxidative Stress, and Hypertension</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Rhian M. Touyz, Andreia Chignalia, and Mona Sedeek</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Peripartum Cardiomyopathy: Role of STAT-3 and Reactive Oxygen Species</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Denise Hilfiker-Kleiner, Arash Haghikia, and Andres Hilfiker</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Oxidative Stress and Inflammation after Coronary Angiography</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Raymond Farah</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Oxidative Stress in Cardiac Transplantation</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Galen M. Pieper and Ashwani K. Khanna</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Oxidative Stress and Atrial Fibrillation</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Ali A. Sovari and Samuel C. Dudley</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Oxidative Stress and the Antioxidative Capacity in Myocardial Infarction</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>Yao Sun</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Oxidative Stress and Redox Signalling in Cardiac Remodelling</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Min Zhang, Alex Sirker, and Ajay M. Shah</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Oxidative Stress and Cardiovascular Fibrosis</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>Subramaniam Pennathur, Louise Hecker, and Victor J. Thannickal</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Oxidative Risk Factors for Cardiovascular Disease in Women</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Manuela Gago-Dominguez, Xuejuan Jiang, and Jose Esteban Castelao</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>24 Protective Effects of Food on Cardiovascular Diseases</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>Alfonso Giovane and Claudio Napoli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Novel Synthetic Antioxidants and Nitrated Lipids: From Physiology</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>to Therapeutic Implications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gloria V. López and Homero Rubbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 Thioredoxin in the Cardiovascular System—Towards</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>a Thioredoxin-Based Antioxidative Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameron World and Bradford C. Berk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 The Protective Effect of Melatonin on the Heart</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td>Amanda Lochner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 Exercise-Induced Cardioprotection: Overview</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>with an Emphasis on the Role of Antioxidants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karyn L. Hamilton and John C. Quindry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 Antioxidative Properties of Statins in the Heart</td>
<td>557</td>
<td></td>
</tr>
<tr>
<td>Oliver Adam and Ulrich Laufs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>567</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

Oliver Adam Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany, o.adam@freenet.de

Bradford C. Berk University of Rochester Medical Center, Rochester, NY 14642, USA, bradford_berk@urmc.rochester.edu

David Bernhard Cardiac Surgery – Research Laboratories, Department of Surgery, Medical University of Vienna/AKH, Ebene 8, G09/07 Währinger Gürtel 18-20, A-1090 Vienna, Austria, david.bernhard@meduniwien.ac.at

Jennifer Victoria Bodkin Cardiovascular Division, King’s College London BHF Centre of Excellence, London SE1 9NH, UK, jennifer.bodkin@kcl.ac.uk

Diego Bonatto Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil, diegobonatto@gmail.com

Susan Diana Brain Cardiovascular Division, King’s College London BHF Centre of Excellence, London SE1 9NH, UK, sue.brain@kcl.ac.uk

Ralf P. Brandes Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, 60596 Frankfurt am Main, Germany, brandes@zphys1.uni-frankfurt.de

Joseph R. Burgoyne Cardiovascular Division, King’s College London BHF Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London SE1 7EH, UK, joseph.burgoyne@kcl.ac.uk

Ariel R. Cardoso Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil

Jose Esteban Castelao Complejo Hospitalario Universitario de Vigo, CHUVI Genetic Oncology Unit, CHUVI, Meixoeiro s/n, Vigo, Spain; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-9175, USA, castelao@usc.edu
Rebecca L. Charles Cardiovascular Division, King’s College London BHF Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London SE1 7EH, UK, rebecca.charles@kcl.ac.uk

Andreia Chignalia Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada

Anna Csizsar Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1313, Oklahoma City, OK 73104, anna-csizsar@ouhsc.edu

Dipak K. Das School of Medicine, Cardiovascular Research Center, University of Connecticut, Farmington, CT, USA, ddas@neuron.uchc.edu

Samarjit Das School of Medicine, Cardiovascular Research Center, University of Connecticut, Farmington, CT, USA

Somak Das School of Medicine, Cardiovascular Research Center, University of Connecticut, Farmington, CT, USA

Denise de Castro Fernandes Vascular Biology Laboratory, School of Medicine, Heart Institute (InCor), University of São Paulo, CEP 05403-000 São Paulo, SP, Brazil, denisef@usp.br

Christian Delles BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, Scotland, UK, c.delles@clinmed.gla.ac.uk

Javier Díez Center for Applied Medical Research, 31008 Pamplona, Spain, jaimar@unav.es

Anna F. Dominiczak BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, Scotland, UK, ad7e@clinmed.gla.ac.uk

Samuel C. Dudley Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, USA, scdudley@uic.edu

Philip Eaton Cardiovascular Division, King’s College London BHF Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London SE1 7EH, UK, philip.eaton@kcl.ac.uk

Raymond Farah Department of Internal Medicine B, Ziv Medical Center, Safed, Israel, raymond.f@ziv.health.gov.il

Manuela Gago-Dominguez Department of Preventive Medicine, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-9175, USA, mgago@usc.edu

Alfonso Giovane Department of Biochemistry and Biophysics, 1st School of Medicine, Second University of Naples, Naples, Italy, alfonso.giovane@unina2
Contributors

Rabea Graepel Cardiovascular Division, King’s College London BHF Centre of Excellence, London SE1 9NH, UK, rabea.graepel@kcl.ac.uk

Kathy K. Griendling Departments of Medicine, The Atlanta VA Medical Center, Emory University School of Medicine, Atlanta, GA, USA, kgriend@emory.edu

Divya Gupta Departments of Medicine, The Atlanta VA Medical Center, Emory University School of Medicine, Atlanta, GA, USA, dgupta2@emory.edu

Tomasz J. Guzik Translational Medicine Laboratory, Department of Internal and Agricultural Medicine and Department of Pharmacology Jagiellonian, University School of Medicine, Cracow 31-121, Poland, tguzik@em-uj.krakow.pl

Arash Haghikia Department of Cardiology and Angiology, Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany, haghikia.arash@mh-hannover.de

Karyn L. Hamilton Human Performance Clinical Research Laboratory, Applied Human Sciences, Colorado State University, Fort Collins, CO 80523-1582, USA, karynh@cahs.colostate.edu

Louise Hecker Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA, lhecker@uab.edu

Sabine Heumüller Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, 60596 Frankfurt am Main, Germany, heumueller@zphys1.uni-frankfurt.de

Andres Hilfiker Department of Cardiology and Angiology, Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany, hilfiker.andres@mh-hannover.de

Denise Hilfiker-Kleiner Department of Cardiology and Angiology, Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany, hilfiker.denise@mh-hannover.de

Xuejuan Jiang Department of Preventive Medicine, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-9175, USA, xuejuanj@usc.edu

Timo Kahles Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, 60596 Frankfurt am Main, Germany, kahles@zphys1.uni-frankfurt.de

Ashwani K. Khanna Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA, akhanna@medicine.umd.edu

Alicia J. Kowaltowski Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil, alicia@iq.usp.br
Munish Kumar Department of Physiology and Biophysics, School of Medicine
University of Louisville, Louisville, KY 40202, USA

Saumi Kundu Department of Physiology and Biophysics, School of Medicine
University of Louisville, Louisville, KY 40202, USA

Ulrich Laufs Klinik für Innere Medizin III, Kardiologie, Angiologie und
Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421
Homburg/Saar, Germany, ulrich@laufs.com

Francisco R.M. Laurindo Vascular Biology Laboratory, School of Medicine,
Heart Institute (InCor), University of São Paulo, CEP 05403-000 São Paulo, SP,
Brazil, francisco.laurindo@incor.usp.br

Amanda Lochner Division of Medical Physiology, Department of Biomedical
Sciences, Faculty of Health Sciences, University of Stellenbosch, Tygerberg 7505,
Republic of South Africa, alo@sun.ac.za

Gloria V. López Laboratorio de Química Orgánica, Facultad de Ciencias,
Universidad de la República, 11400 Montevideo, Uruguay; Departamento de
Bioquímica, Facultad de Medicina, Universidad de la República, 11800
Montevideo, Uruguay, vlopez@fq.edu.uy

Paras Kumar Mishra Department of Physiology and Biophysics, School of
Medicine, University of Louisville, Louisville, KY 40202, USA

Karni S. Moshal Department of Physiology and Biophysics, School of Medicine,
University of Louisville, Louisville, KY 40202, USA

Claudio Napoli Department of General Pathology, 1st School of Medicine,
Second University of Naples, Naples, Italy, claudio.napoli@unina2.it

Subramaniam Pennathur Division of Nephrology, Department of Internal
Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA,
spennath@umich.edu

Galen M. Pieper Division of Transplant Surgery, Department of Surgery, Medical
College of Wisconsin, Cardiovascular Research Center and the Free Radical
Research Center, Milwaukee, WI, USA, gmpieper@mcw.edu

Bruno B. Queliconi Departamento de Bioquímica, Instituto de Química,
Universidade de São Paulo, São Paulo, SP, Brazil

John C. Quindry Cardioprotection Laboratory, Department of Kinesiology,
Auburn University, Auburn, AL 36849, USA, jcq0001@auburn.edu

Homero Rubbo Departamento de Bioquímica, Facultad de Medicina, Universidad
de la República, 11800 Montevideo, Uruguay, hrubbo@fmed.edu.uy

Heinrich Sauer Department of Physiology, Justus Liebig University Giessen,
Giessen 35392, Germany, heinrich.sauer@physiologie.med.uni-giessen.de
Mona Sedeek Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada

Ajay M. Shah Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK, ajay.shah@kcl.ac.uk

Alex Sirker Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK, alex.sirker@kcl.ac.uk

Ali A. Sovari Section of Cardiology, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60612, USA, asovari@med.net.ucla.edu

Yao Sun Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee, Health Science Center, Memphis, TN 38163, USA, yasun@uthsc.edu

W. Robert Taylor Departments of Medicine and Biomedical Engineering, The Atlanta VA Medical Center, Emory University School of Medicine, Atlanta, GA, USA, wtaylor@emory.edu

Victor J. Thannickal Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA, vjthan@uab.edu

Rhian M. Touyz Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada, rtouyz@uottawa.ca

Neetu Tyagi Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA, neetu.tyagi@louisville.edu

Suresh C. Tyagi Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA, suresh.tyagi@louisville.edu

Zoltan Ungvari Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1313, Oklahoma City, OK 73104, zoltan-ungvari@ouhsc.edu

Maria Wartenberg Cardiology Division, Department of Internal Medicine I, Friedrich Schiller University Jena, Jena 07743, Germany, maria.wartenberg@med.uni-jena.de

Cameron World Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, Rochester, NY, USA

Guillerm Zalba Center for Applied Medical Research, 31008 Pamplona, Spain, gzalba@unav.es

Min Zhang Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK, min.zhang@kcl.ac.uk