Chemotaxis

Methods and Protocols

Edited by

Tian Jin* and Dale Hereld#

*Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD, USA

#National Institute on Alcohol, Abuse and Alcoholism, NIH, Rockville, MD, USA

Humana Press
Preface

Cell movement is fundamental to the development and other vital functions of organisms. Many motile cells can detect shallow gradients of specific chemical signals in their environments and migrate accordingly. This directed cell movement is called chemotaxis and is essential for various cell types to carry out their biological functions. This book includes state-of-the-art methods for investigating cell migration behaviors, studying molecular components involved in detecting extracellular signals and directing cell movement, visualizing spatiotemporal dynamics of the components in signaling networks of chemotaxis in real time, and constructing quantitative models that simulate chemoattractant-induced cell responses.

Various methods to investigate cell movement are presented in Chapters 1–16. These chapters contain experimental procedures to visualize and measure migration behaviors of different kinds of organisms, including bacterial movement in chemoattractant gradients, light-induced responses of prokaryotes, *Chlamydomonas* and *Dictyostelium discoideum*, electric field-directed movement of eukaryotic cells, chemotropism in the budding yeast, cell migration of *D. discoideum*, *C. elegans*, *Drosophila*, zebrafish, and mouse, chemotaxis of *D. discoideum*, and neutrophil-like cell lines. The volume also contains microscopy procedures to study breast cancer cell migration, tumor cell invasion in vivo, and neuronal chemotaxis. These methods provide quantitative measurements and description of cell migration behaviors.

Significant progress has been made in recent years toward identifying the molecular components and understanding the molecular networks that underlie chemoattractant sensing and cell migration in various organisms. Chapters 17–20 describe the methods to study signal transduction pathways involved in chemotaxis in the model system, *D. discoideum*. Chapter 21 introduces the role of chemokine receptor signaling in HIV infection.

Fluorescence microscopy permits us to directly monitor dynamics of many signaling events in single cells in real time. Chapters 22–29 describe methods that measure spatiotemporal dynamics of chemoattractant concentrations, activation of receptors, heterotrimeric G-proteins, small G-protein Ras signaling, and actin cytoskeleton assembly using different imaging techniques. Several chapters introduce cutting-edge imaging techniques, such as FRAP, FRET, and single-molecule microscopy, to determine mobility of receptors and other signaling components. These techniques allow us to reveal dynamics of signaling components in live cells and to track signaling events in single cells in space and time.

Computer-based quantitative models that address the complexity of a signaling network with its many interacting components are valuable for studies of chemotaxis. Chapter 30 summarizes a computer program that quantifies movement of amoeboid cells. Chapter 31 introduces mathematical calculations on experimentally generated chemoattractant gradients. Finally, Chapters 32 and 33 introduce two computational models that are constructed to simulate spatial–temporal dynamics of signaling networks for eukaryotic chemosensing.
We are grateful to all the authors for contributing their expertise and believe that this book will provide the reader with an overview of and practical guidance on the diverse methodologies that are propelling chemotaxis research forward.

Rockville, MD

Tian Jin

Rockville, MD

Dale Hereld
Contents

Preface ... v
Contributors ... xi
1. Microfluidic Techniques for the Analysis of Bacterial Chemotaxis
 Derek L. Englert, Arul Jayaraman, and Michael D. Manson
 1
2. Prokaryotic Phototaxis
 Wouter D. Hoff, Michael A. van der Horst, Clara B. Nudel, and Klaas J. Hellingwerf
 25
3. Photoorientation in Photosynthetic Flagellates
 Donat-Peter Häder and Michael Lebert
 51
4. Dictyostelium Slug Phototaxis
 Sarah J. Annesley and Paul R. Fisher
 67
5. Electrotaxis and Wound Healing: Experimental Methods
 to Study Electric Fields as a Directional Signal for Cell Migration
 Guangping Tai, Brian Reid, Lin Cao, and Min Zhao
 77
6. Chemotropism During Yeast Mating
 Peter J. Follette and Robert A. Arkowitz
 99
7. Group Migration and Signal Relay in Dictyostelium
 Paul W. Kriebel and Carole A. Parent
 111
8. Quantitative Analysis of Distal Tip Cell Migration in C. elegans
 Myeongwoo Lee and Erin J. Cram
 125
9. Inflammation and Wound Healing in Drosophila
 Brian Stramer and Will Wood
 137
10. Neutrophil Motility In Vivo Using Zebrafish
 Jonathan R. Mathias, Kevin B. Walters, and Anna Huttenlocher
 151
11. Chemotaxis in Neutrophil-Like HL-60 Cells
 Arthur Millius and Orion D. Weiner
 167
12. Chemokine Receptor Dimerization and Chemotaxis
 José Miguel Rodríguez-Frade, Laura Martínez Muñoz, Borja L. Holgado, and Mario Mellado
 179
13. Intravital Two-Photon Imaging of Adoptively Transferred
 B Lymphocytes in Inguinal Lymph Nodes
 Chung Park, Il-Young Hwang, and John H. Kehrl
 199
 by TIRF and IRM Microscopy
 Xuehua Xu, Peter Johnson, and Susette C. Mueller
 209
15. In Vivo Assay for Tumor Cell Invasion
 Lorena Hernandez, Tatiana Smirnova, Jeffrey Wyckoff, John Condeelis, and Jeffrey E. Segall
 227
16. Quantitative Studies of Neuronal Chemotaxis in 3D ... 239
 William J. Rosoff, Ryan G. McAllister, Geoffrey J. Goodhill, and Jeffrey S. Urbach

17. Assays for Chemotaxis and Chemoattractant–Stimulated TorC2 Activation and PKB Substrate Phosphorylation in Dictyostelium ... 255
 Yoichiro Kamimura, Ming Tang, and Peter Devreotes

18. Biochemical Responses to Chemoattractants in Dictyostelium: Ligand–Receptor Interactions and Downstream Kinase Activation ... 271
 Xin-Hua Liao and Alan R. Kimmel

19. Quantifying In Vivo Phosphoinositide Turnover in Chemotactically Competent Dictyostelium Cells ... 283
 Nadine Pawolleck and Robin S.B. Williams

20. In Vivo Measurements of Cytosolic Calcium in Dictyostelium discoideum ... 291
 Claire T. Allan and Paul R. Fisher

21. Chemokine Receptor Signaling and HIV Infection ... 309
 Yuntao Wu

22. Spatiotemporal Stimulation of Single Cells Using Flow Photolysis ... 321
 Carsten Beta

23. Spatiotemporal Regulation of Ras-GTPases During Chemotaxis ... 333
 Atsuo T. Sasaki and Richard A. Firtel

24. FRAP Analysis of Chemosensory Components of Dictyostelium ... 349
 Carrie A. Elzie and Chris Janetopoulos

 Xuehua Xu, Joseph A. Brzostowski, and Tian Jin

26. Imaging Actin Cytoskeleton Dynamics in Dictyostelium Chemotaxis ... 385
 Günther Gerisch

27. Analysis of Actin Assembly by In Vitro TIRF Microscopy ... 401
 Dennis Breitsprecher, Antje K. Kiesewetter, Joern Linkner, and Jan Faix

28. Single-Molecule Imaging Techniques to Visualize Chemotactic Signaling Events on the Membrane of Living Dictyostelium Cells ... 417
 Yukihiro Miyanaga, Satomi Matsuoka, and Masahiro Ueda

29. Imaging B-Cell Receptor Signaling by Single-Molecule Techniques ... 437
 Pavel Tolar and Tobias Meckel

30. Light Microscopy to Image and Quantify Cell Movement ... 455
 Deborah J. Wessels, Spencer Kuhl, and David R. Soll
31. Mathematics of Experimentally Generated Chemoattractant Gradients ... 473
 Marten Postma and Peter J.M. van Haastert

32. Modeling Spatial and Temporal Dynamics of Chemotactic Networks 489
 Liu Yang and Pablo A. Iglesias

33. Computational Modeling of Signaling Networks for Eukaryotic Chemosensing 507
 Martin Meier-Schellersheim, Frederick Klauschen, and Bastian Angermann

Index ... 527
Contributors

Claire Y. Allan • Department of Microbiology, La Trobe University, Bundoora, VIC, Australia

Bastian Angermann • Laboratoire d’Immunologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada

Sarah J. Annesley • Department of Microbiology, La Trobe University, Bundoora, VIC, Australia

Robert A. Arkowitz • Institute of Developmental Biology and Cancer, CNRS UMR 6543, University of Nice – Sophia Antipolis, Nice, France

Carsten Beta • Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany

Dennis Breitsprecher • Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany

Joseph A. Brzostowski • Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Lin Cao • Center for Neuroscience, Dermatology Research, University of California Davis School of Medicine, Davis, CA, USA

John Condeelis • Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA

Erin J. Cram • Department of Biology, Northeastern University, Boston, MA, USA

Peter Devreotes • Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Carrie A. Elzie • Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA

Derek L. Englert • Department of Chemical Engineering, Texas A&M University, College Station, TX, USA

Jan Faix • Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany

Richard A. Firtel • Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA

Paul R. Fisher • Department of Microbiology, La Trobe University, Bundoora, VIC, Australia

Peter J. Follette • Institute of Developmental Biology and Cancer, CNRS UMR 6543, University of Nice – Sophia Antipolis, Nice, France

Güntner Gerisch • Max-Planck-Institut für Biochemie, Martinsried, Germany

Geoffrey J. Goodhill • Queensland Brain Institute and School of Physical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
Donat-Peter Hader • Department of Biology, Plant Ecophysiology, Friedrich-Alexander University, Erlangen, Germany
Klaas J. Hellingswerf • Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
Lorena Hernandez • Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
Wouter D. Hoff • Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
Borja L. Holgado • Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain
Anna Huttenlocher • Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, WI, USA
Il-Young Hwang • Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
Pablo A. Iglesias • Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
Chris Janetopoulos • Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
Arul Jayaraman • Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
Tian Jin • Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
Peter Johnson • Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA
Yoichiro Kamimura • Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
John H. Kehrl • Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
Antje K. Kiesewetter • Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
Alan R. Kimmel • Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
Frederick Klauschen • Program in Systems Immunology and Infectious Disease Modeling, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
Paul W. Kriebel • Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
Spencer Kuhl • Department of Biology, The University of Iowa, Iowa City, IA, USA
MICHAEL LEBERT • Department of Biology, Plant Ecophysiology, Friedrich-Alexander University, Erlangen, Germany

MYEONGWOO LEE • Department of Biology, Baylor University, Waco, TX, USA

XIN-HUA LIAO • Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA

JOERN LINKNER • Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany

MICHAE L D. MANSON • Department of Biology, Texas A&M University, College Station, TX, USA

JONATHAN R. MATTHAS • Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA

SATOMI MATSUOKA • Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Japan Science and Technology Agency, CREST, Osaka, Japan

RYAN G. McALLISTER • Department of Physics, Georgetown University, Washington, DC, USA

TOBIAS MECKEL • Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

MARTIN MEIER-SCHELLERSHEIM • Program in Systems Immunology and Infectious Disease Modeling, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

MARIO MELLADO • Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain

ARTHUR MILLIUS • Cardiovascular Research Institute and Department of Biochemistry, University of California, San Francisco, CA, USA

YUKIHIRO MIYANAGA • Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Japan Science and Technology Agency, CREST, Osaka, Japan

SUSETTE C. MUELLER • Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA

LAURA MARTINEZ MUÑOZ • Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain

CLAIRA B. NUDEL • Department of Industrial Microbiology and Biotechnology, University of Buenos Aires School of Pharmacy, Buenos Aires, Argentina

CAROLE A. PARENT • Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA

CHUNG PARK • Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
Contributors

Nadine Pawolleck • Bourne Laboratory, Biomedical Sciences Division, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK

Marten Postma • Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

Brian Reid • Center for Neuroscience, Dermatology Research, University of California Davis School of Medicine, Davis, CA, USA

José Miguel Rodríguez-Frade • Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain

William J. Rosoff • Department of Physics, Georgetown University, Washington, DC, USA

Atsuo T. Sasaki • Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA

Jeffrey E. Segall • Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA

Tatiana Smirnova • Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA

David R. Soll • Department of Biology, The University of Iowa, Iowa City, IA, USA

Brian Straemer • Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK

Guangping Tai • Center for Integrative Physiology, University of Edinburgh, Edinburgh, UK

Ming Tang • Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Pavel Tolar • Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Masahiro Ueda • Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Japan Science and Technology Agency, CREST, Osaka, Japan

Jeffrey S. Urbach • Department of Physics, Georgetown University, Washington, DC, USA

Michael A. van der Horst • Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands

Peter J.M. van Haastert • Department of Cell Biochemistry, University of Groningen, Haren, The Netherlands

Kevin B. Walters • Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA

Orion D. Weiner • Cardiovascular Research Institute and Department of Biochemistry, University of California, San Francisco, CA, USA
Deborah J. Wessels • Department of Biology, The University of Iowa, Iowa City, IA, USA
Robin S.B. Williams • Bourne Laboratory, Biomedical Sciences Division, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
Will Wood • Department of Biology and Biochemistry, University of Bath, Bath, UK
Yuntao Wu • Department of Molecular and Microbiology, George Mason University, Manassas, VA, USA
Jeffrey Wyckoff • Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
Xuehua Xu • Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA
Liu Yang • Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
Min Zhao • Center for Neuroscience, Dermatology Research, University of California Davis School of Medicine, Davis, CA, USA