Zebrafish

Methods and Protocols

Edited by

Graham J. Lieschke*, Andrew C. Oates†, and Koichi Kawakami‡

* Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
† Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
‡ Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan and
§ Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
Preface

In the last 20 years, research activity using the zebrafish *Danio rerio* has increased dramatically. Their contribution to modern genetic and molecular research originates with their use as a vehicle for testing ideas concerning the genetic basis of vertebrate brain formation and function at the University of Oregon’s Institute for Neuroscience. Their research use has expanded into their becoming a leading model system for understanding the basic genetics, cell biology, and physiology of vertebrate development and human disease states in hundreds of labs around the world. It has been a heady time for the little fish! There are good reasons for this rapid rise of popularity, both practical and technical. Practically, zebrafish are easy and inexpensive to keep, breed, and raise, and—similar to yeast, mice, and fruit flies—zebrafish like being around humans. Technically, the genetic tractability, embryonic accessibility, and imaging potential of the zebrafish are, in our opinion, the features that have tempted so many people to push the boundaries of zebrafish research so far in such a short time. Although each model organism has its strengths and weaknesses, we now regard zebrafish as sitting alongside mouse, worm and fruit fly as key animal model systems in modern biology.

There are already a number of excellent books and papers dealing with zebrafish experimental techniques, which begs the question—why another one? In choosing the contributions to this book, we were guided by three principles as we sought to make sure that this volume made a useful contribution to the field. First, because of the rapid development of techniques and reagents, we looked for material that was not yet well known or widely distributed. Second, we sought experience from newer labs with approaches that had not received exposure. Third, we tried to avoid duplicating familiar, well tested, and trusted material. The material in this volume is organized loosely along three strengths of the zebrafish: genetic modification, accessibility for manipulation, and ease of in vivo live imaging.

With a nearly complete sequenced genome, with significant genetic homology to that of humans, and with ease of mutagenesis and housing of sufficient numbers to enable forward genetic screens, the zebrafish is a natural candidate for genetic analysis of biologic processes. Chapters 1 and 2 describe dense chemical and retroviral mutagenesis, Chapter 3 covers resource-efficient haploid screening, and Chapter 4 discusses effective cryopreservation of zebrafish sperm for the precious mutants harvested from these techniques.

External fertilization and the production of large numbers of embryos from each mother have made practical the microinjection of lineage dyes, mRNA for protein over-expression, and DNA for transgenesis, as well as the transplantation of cells for genetic cell-autonomy studies. It has also made possible large-scale screens for gene expression using *in situ* hybridization, and enhancer traps. Part II of this volume develops these themes, describing the use of transposons in Chapters 5 and 6, or homologous recombination in bacterial artificial chromosomes in Chapter 7 to modify zebrafish chromosomal DNA for transgenic analysis of gene expression, as well as efficient single-copy transgenesis in
Chapter 8. Having thus created reporter strains of zebrafish with fluorescently-labeled cells, a novel method of ablating these cells specifically with nitroreductase allows their role in the organism to be tested, and is discussed in Chapter 9. Such cellular-level precision is also found in Chapter 10, which focuses on the focal electroporation of dyes or DNA into cells deep within the fish. However, sometimes a slightly larger specific region of the embryo must be manipulated, and zebrafish surgical techniques along the lines of those utilized in chick experimental embryology are presented in Chapter 11. Having plentiful embryonic material also facilitates the use of microarrays to analyze mRNA expression. Chapters 12 and 13 describe their synthesis and use for the zebrafish. The recent emergence and importance of microRNA biology has been underscored by pioneering work in the zebrafish; Chapter 14 outlines methods for validating microRNA targets in vivo.

It is perhaps the optical transparency of the zebrafish embryo that has most tipped the balance in its favor. In this volume, we included chapters showcasing methods that most labs with access to the equipment of a modern biology department can use. Chapter 15 describes a protocol for following tissue-scale morphogenesis simultaneously in multiple embryos that allows for the estimation of precision and variability. The striking beauty and power of single-cell resolution in the living zebrafish is seen in Chapters 16 and 17, which focus on imaging the early immune system using laser confocal scanning microscopy and the deeper cells of the gastrula using two-photon. The significant technical challenges of imaging the late-developing gut are tackled in Chapter 18 with a range of methods that include principles with application to other larval organ systems. Finally, Chapter 19 presents methods for achieving the lofty goal of following every cell in an organ, or indeed an entire organism, during development.

We hope that these chapters not only meet experimental needs that already exist, but also that they might inspire approaches that were not previously considered, and finally that they might give close insight and perspective into the emerging literature. The editors would like to thank John Walker and the staff at Humana Press and Springer for their continuous assistance, and the authors for their hard work and flexibility.

Parkville, Australia
Dresden, Germany
Mishima, Japan

Graham J. Lieschke
Andrew C. Oates
Koichi Kawakami
Contents

Preface ............................................................................................................................... v
Contributors .................................................................................................................... ix

PART I Mutagenesis and Mutants

1. Highly Efficient ENU Mutagenesis in Zebrafish .................................................. 3
   Ewart de Bruijn, Edwin Cuppen, and Harma Feitsma
2. Production of Pseudotyped Retrovirus and the Generation of Proviral Transgenic Zebrafish ................................................................. 13
   Li-En Jao and Shawn M. Burgess
3. Undertaking a Successful Gynogenetic Haploid Screen in Zebrafish ................. 31
   Judith E. Layton
4. Cryopreservation and In Vitro Fertilization at the Zebrafish International Resource Center .............................................................. 45
   Carrie Carmichael, Monte Westerfield, and Zoltán M. Varga

PART II Transgenesis

5. Transient and Stable Transgenesis Using Tol2 Transposon Vectors .................... 69
   Hiroshi Kikuta and Koichi Kawakami
6. Analysis of Genes and Genome by the Tol2-Mediated Gene and Enhancer Trap Methods ................................................................. 85
   Akihiro Urasaki and Koichi Kawakami
7. Bacterial Artificial Chromosome Transgenesis for Zebrafish .......................... 103
   Zhongan Yang, Hong Jiang, and Shuo Lin
8. Simple and Efficient Transgenesis with Meganuclease Constructs in Zebrafish .............................................................. 117
   Daniele Soroldoni, Benjamin M. Hogan, and Andrew C. Oates

PART III Tissue-Specific Manipulations

9. Nitroreductase-Mediated Cell Ablation in Transgenic Zebrafish Embryos ........ 133
   Harshan Pisharath and Michael J. Parsons
10. Focal Electroporation in Zebrafish Embryos and Larvae ................................. 145
    Marcel Tawk, Isaac H. Bianco, and Jonathan D.W. Clarke
11. Tissue Micromanipulation in Zebrafish Embryos .............................................. 153
    Alexander Picker, Daniela Röllig, Olivier Pourquié, Andrew C. Oates, and Michael Brand
## PART IV  ANALYZING GENE EXPRESSION

   
   Siew Hong Lam, Sinnakarupan Mathavan, and Zhiyuan Gong

   175

13. Zebrafish Spotted-Microarray for Genome-Wide Expression Profiling Experiments: Data Acquisition and Analysis
   
   Siew Hong Lam, R. Krishna Murthy Karuturi, and Zhiyuan Gong

   197

14. Validating microRNA Target Transcripts Using Zebrafish Assays
   
   Luke Pase and Graham J. Lieschke

   227

## PART V  IMAGING

15. Multiple Embryo Time-Lapse Imaging of Zebrafish Development
   
   Leah Herrgen, Christian Schröter, Lola Bajard, and Andrew C. Oates

   243

16. Live Cell Imaging of Zebrafish Leukocytes
   
   Chris Hall, Maria Vega Flores, Kathy Crosier, and Phil Crosier

   255

17. Imaging Zebrafish Embryos by Two-Photon Excitation Time-Lapse Microscopy
   
   Lara Carvalho and Carl-Philipp Heisenberg

   273

18. Morphological Analysis of the Zebrafish Digestive System
   
   Andrew J. Trotter, Adam C. Parslow, and Joan K. Heath

   289

19. In Toto Imaging of Embryogenesis with Confocal Time-Lapse Microscopy
   
   Sean G. Megason

   317

Index

333
Contributors

LOLA BAJARD • Max Planck Institute of Molecular Cell Biology and Genetics
Dresden, Germany

ISAAC H. BIANCO • Department of Anatomy and Developmental Biology, University
College London, London, UK

MICHAEL BRAND • Biotechnology Center and Center of Regenerative Therapies
Dresden, University of Technology, Dresden, Germany

SHAWN M. BURGESS • Genome Technology Branch, National Human Genome
Research Institute, National Institutes of Health, Bethesda, MD

CARRIE CARMICHAEL • Zebrafish International Resource Center,
University of Oregon, Eugene, OR

LARA CARVALHO • Max Planck Institute of Molecular Cell Biology and Genetics,
Dresden, Germany

JONATHAN D.W. CLARKE • MRC Centre for Developmental Neurobiology, King’s
College London, London, UK

KATHY CROSIER • Department of Molecular Medicine and Pathology, School
of Medical Sciences, The University of Auckland, Auckland, New Zealand

PHIL CROSIER • Department of Molecular Medicine and Pathology, School of Medical
Sciences, The University of Auckland, Auckland, New Zealand

EDWIN CUPPEN • Hubrecht Institute for Developmental Biology and Stem Cell
Research, Utrecht, The Netherlands

EWART DE BRUIJN • Hubrecht Institute for Developmental Biology and Stem Cell
Research, Utrecht, The Netherlands

HARMA FEITSMA • Hubrecht Institute for Developmental Biology and Stem Cell
Research, Utrecht, The Netherlands

MARIA VEGA FLORES • Department of Molecular Medicine and Pathology,
School of Medical Sciences, The University of Auckland, Auckland, New Zealand

ZHIYUAN GONG • Department of Biological Sciences, National University
of Singapore, Singapore

CHRIS HALL • Department of Molecular Medicine and Pathology, School of Medical
Sciences, The University of Auckland, Auckland, New Zealand

JOAN K. HEATH • Colon Molecular and Cell Biology Laboratory, Ludwig Institute
for Cancer Research, Royal Melbourne Hospital, Parkville, VIC, Australia

CARL-PHIILIPP HEISENBERG • Max Planck Institute of Molecular Cell Biology and
Genetics, Dresden, Germany

LEAH HERRGEN • Max Planck Institute of Molecular Cell Biology and Genetics,
Dresden, Germany

BENJAMIN M. HOGAN • Hubrecht Institute for Developmental Biology and Stem Cell
Research, Utrecht, The Netherlands
Contributors

LI-EN JAO • Cell and Developmental Biology, Vanderbilt University, Nashville, TN

HONG JIANG • Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA

R. KRISHNA MURTHY KARUTURI • Genome Institute of Singapore, Agency for Science Technology and Research, Singapore

KOICHI KAWAKAMI • Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan

HIROSHI KIKUTA • Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan

SIEW HONG LAM • Department of Biological Sciences, National University of Singapore, Singapore

JUDITH E. LAYTON • The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia

GRAHAM J. LIESCHKE • Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia

SHUO LIN • Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA

SINNAKARUPAN MATHAVAN • Genome Institute of Singapore, Singapore

SEAN G. MEGASON • Department of Systems Biology, Harvard Medical School, Boston, MA

ANDREW C. OATES • Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

ADAM C. PARSLOW • Colon Molecular and Cell Biology Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, VIC, Australia

MICHAEL J. PARSONS • Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD

LUKE PASE • Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia

ALEXANDER PICKER • Biotechnology Center and Center of Regenerative Therapies Dresden (CRTD)University of Technology, Dresden, Germany

HARSHAN PISHARATH • Department of Comparative Medicine, Johns Hopkins School of Medicine, Baltimore, MD

OLIVIER POURQUIÉ • Stowers Institute for Medical Research, Howard Hughes Medical Institute, Kansas City, MO

DANIELA ROELLIG • Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany

CHRISTIAN SCHRÖTER • Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany

DANIELE SOROLDONI • Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
Marcel Tawk • Department of Anatomy and Developmental Biology, University College London, London, UK
Andrew J. Trotter • Colon Molecular and Cell Biology Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, VIC, Australia
Akihiro Urasaki • Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
Zoltán M. Varga • Zebrafish International Resource Center, University of Oregon, Eugene, OR
Monte Westerfield • Institute of Neuroscience, University of Oregon, Eugene, OR
Zhongan Yang • Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA