The Nuclear Receptor Superfamily

Methods and Protocols

Edited by

Iain J. McEwan

University of Aberdeen, Aberdeen, UK

Humana Press
Preface

It is just over 20 years since the first steroid receptor cDNAs were cloned, a development that led to the concept of a superfamily of ligand-activated transcription factors: The nuclear receptors. Nuclear receptors share a common architecture at the protein level, but a remarkable diversity is observed in terms of natural ligands and xenobiotics that bind to and regulate receptor function. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. A significant proportion of the family members have been described as orphans, as the natural ligand, if it exists, remains to be identified. Nuclear receptors act principally to directly control patterns of gene expression and play vital roles during development and in the regulation of metabolic and reproductive functions in the adult organism. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important family of proteins. The aims of this volume of Methods in Molecular Biology are to describe a range of molecular, structural, and cell biological protocols currently used to investigate the structure–function of nuclear receptors, together with experimental approaches that may lead to new therapeutic strategies for treating nuclear receptor-associated diseases.

This volume will be of great benefit and use to those starting out in the nuclear receptor research field (life sciences graduate students and postdoctoral fellows) as well as to more established researchers who wish to apply different methods to a particular receptor/research problem. The volume will also be of use to medical students and clinicians undertaking research in this ever-growing field of study.

Aberdeen, UK

I.J. McEwan
Contents

Preface ... v

Contributors ... ix

Part I: Introduction

1 Nuclear Receptors: One Big Family 3
 Iain J. McEwan

Part II: Ligand Binding and Nuclear Receptor Turnover

2 Methods for Measuring Ligand Dissociation and Nuclear Receptor Turnover in Whole Cells 21
 Elizabeth M. Wilson

3 Flow Cytometry as a Tool for Measurement of Steroid Hormone Receptor Protein Expression in Leukocytes 35
 Cherie L. Butts and Esther M. Sternberg

4 X-Ray Crystallography of Agonist/Antagonist-Bound Receptors 51
 Ashley C.W. Pike

Part III: Nuclear Localization and DNA Binding

5 FRAP and FRET Methods to Study Nuclear Receptors in Living Cells. 69
 Martin E. van Royen, Christoffel Dinant, Pascal Farla, Jan Trapman, and Adriaan B. Houtsmuller

6 Receptor-DNA Interactions: EMSA and Footprinting 97
 Jason T. Read, Helen Cheng, Stephen C. Hendy, Colleen C. Nelson, and Paul S. Rennie

7 Chromatin Immunoprecipitation (ChiP) Methodology and Readouts 123
 Charles E. Massie and Ian G. Mills

Part IV: Nuclear Receptor – Co-regulatory Protein Interactions

8 Yeast-Based Reporter Assays for the Functional Characterization of Cochaperone Interactions with Steroid Hormone Receptors 141
 Heather A. Balsiger and Marc B. Cox

9 High Throughput Analysis of Nuclear Receptor–Cofactor Interactions 157
 Michael L. Goodson, Belnom Farboud, and Martin L. Privalsky

10 Binding Affinity and Kinetic Analysis of Nuclear Receptor/Co-Regulator Interactions Using Surface Plasmon Resonance 171
 Derek N. Lavery

11 Using RNA Interference to Study Protein Function 187
 Carol D. Curtis and Ann M. Nardulli

12 Using Intrinsic Fluorescence Emission Spectroscopy to Study Steroid Receptor and Coactivator Protein Conformation Dynamics 205
 Kate Watt and Iain J. McEwan
PART V: PATHOPHYSIOLOGICAL ANALYSIS OF NUCLEAR RECEPTOR FUNCTION

13 Development of Phosphorylation Site-Specific Antibodies to Nuclear Receptors .. 221
 Inés Pineda Torra, Julia A. Staverosky, Susan Ha, Susan K. Logan, and Michael J. Garabedian

14 Tissue-Selective Knockouts of Steroid Receptors: A Novel Paradigm in the Study of Steroid Action ... 237
 Karel De Gendt and Guido Verhoeven

15 Methods for Identifying and Studying Genetic Alterations in Hormone-Dependent Cancers .. 263
 Outi R. Saramäki, Kati K. Waltering, and Tapio Visakorpi

Index .. 279
Contributors

HEATHER A. BALSIGER • Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA

CHERIE L. BUTTS • Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health/NIH, Bethesda, MD, USA

HELEN CHENG • Department of Urologic Sciences, Prostate Center, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada

MARC B. COX • Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA

CAROL D. CURTIS • Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA

KAREL DE GENDT • Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium

CHRISTOFFEL DINANT • Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands

BEHNON FARBOUD • Section of Microbiology, Division of Biological Sciences, University of California at Davis, Davis, CA, USA

PASCAL FARLA • Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands

MICHAEL J. GARABEDIAN • Departments of Microbiology and Urology, NYU School of Medicine, New York, NY, USA

MICHAEL L. GOODSON • Section of Microbiology, Division of Biological Sciences, University of California at Davis, Davis, CA, USA

SUSAN HA • Departments of Urology and Pharmacology, NYU School of Medicine, New York, NY, USA

STEPHEN C. HENDY • Department of Urologic Sciences, Prostate Center, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada

ADRIAAN B. HOUTSMULLER • Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands

DEREK N. LAVERY • Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

SUSAN K. LOGAN • Departments of Urology and Pharmacology, NYU School of Medicine, New York, NY, USA

CHARLES E. MASSIE • Uro-Oncology Research Group, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK

IAIN J. MCEWAN • School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK

IAN G. MILLS • Uro-Oncology Research Group, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK

ANN M. NARDULLI • Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA
Contributors

Colleen C. Nelson • Department of Urologic Sciences, Prostate Center, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada

Ashley C.W. Pike • Structural Genomics Consortium, University of Oxford, Headington, Oxford, UK

Martin L. Privalsky • Section of Microbiology, Division of Biological Sciences, University of California at Davis, Davis, CA, USA

Jason T. Read • Department of Urologic Sciences, Prostate Center, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada

Paul S. Rennie • Department of Urologic Sciences, Prostate Center, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada

Outi R. Saramäki • Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland

Julia A. Staverosky • Department of Pharmacology, NYU School of Medicine, New York, NY, USA

Esther M. Sternberg • Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health/NIH, Bethesda, MD, USA

Inés Pineda Torra • Department of Microbiology, NYU School of Medicine, New York, NY, USA

Jan Trapman • Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands

Martin E. van Royen • Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands

Guido Verhoeven • Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium

Tapio Visakorpi • Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland

Kati K. Waltering • Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland

Kate Watt • School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK

Elizabeth M. Wilson • Laboratories for Reproductive Biology, Department of Pediatrics and Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA