T Cell Protocols
Preface

This book is a collection of protocols, to provide novel techniques for the study of the biology of T lymphocytes.

The methods described in this book do not cover all of the techniques currently used to study T cell-mediated immune responses for the simple reason that T cell immunology is probably the immunological discipline which can be investigated with the widest variety of approaches.

The choice of chapters was made taking into account two points: First, many of the techniques that have been used for some time have been upgraded during the past few years given the greater availability of a variety of products (i.e. cytokines, chemokines, monoclonal antibodies), of refined technical devices (i.e. novel cell culture and cell analysis equipments), and the development of novel instrumentation (i.e. multiparametric flow cytometers, confocal microscopes). Therefore, in several chapters “old techniques”, which remain fundamental to T cell immunology, are described in their “modern” versions.

Secondly, the technical advancement has generated the possibility to establish novel assays to investigate T cell physiology. This is reflected in the chapters which describe the protocols that allow use of these modern approaches.

The preparation of this book has required participation of several scientists, all leading experts in their respective fields. Without their enthusiastic participation, this work would not have been possible. Therefore, I thank all authors for their contributions and accept all criticism for missing parts, or information or details, for which only I am responsible.

I hope these protocols will be useful for young investigators who approach for the first time the complex field of immunology and for those more experienced scientists who look for concise and efficacious descriptions of novel methods.
Contents

Preface ... v

Contributors ... ix

Color Plates .. xi

1 Analysis of Frequency and Phenotype of Antigen-Specific T Cells 1
 Angus Stock and Vincenzo Cerundolo

2 B Cell Helper Assays ... 15
 Sergio Abrignani, Elena Tonti, Giulia Casorati, and Paolo Dellabona

3 *transkingdom* RNA Interference (*tkRNAi*): A Novel Method to Induce Therapeutic Gene Silencing ... 27
 Thu A. Nguyen and Johannes H. Fruehauf

4 Flow Cytometry and Cell Activation .. 35
 Sonia Gavasso

5 Investigating T Cells by Polychromatic Flow Cytometry 47
 Enrico Lugli, Leonardo Troiano, and Andrea Cossarizza

6 Generation of Human T Cell Clones ... 65
 Sabrina Mariotti and Roberto Nisini

7 Limiting Dilution Analysis of Antigen-Specific T Cells 95
 Jorge Carneiro, Lurdes Duarte, and Elisabetta Padovan

8 T Cell Epitope-Mapping by Cytokine Gene Expression Assay 107
 Maurizio Provenzano and Giulio C. Spagnoli

9 Cytokine Multiplex Immunoassay: Methodology and (Clinical) Applications 119
 Wilco de Jager, Berent Prakken, and Ger T. Rijkers

10 Purification of the T Cell Antigen Receptor and Analysis
 by Blue-Native PAGE .. 135
 Mahima Swamy and Wolfgang W.A. Schamel

11 Non-Replicating Recombinant Vaccinia Virus Expressing CD80 to Enhance T-Cell Stimulation ... 151
 Paul Zajac

Index ... 163
Contributors

Sergio Abrignani, MD • Instituto Nazionale di Genetica Molecolare-INGM, Milan, Italy

Jorge Carneiro, PhD • Instituto Gulbenkian de Ciência, Oeiras, Portugal

Giulia Casorati, PhD • Experimental Immunology Unit, Cancer Immunotherapy and Gene Therapy Program, Department of Biology and Biotechnology, San Raffaele Scientific Institute, Milan, Italy

Vincenzo Cerundolo, MD, PhD • Nuffield Department of Clinical Medicine, Weatherall Institute of Molecular Medicine, Oxford, UK

Andrea Cossarizza, MD, PhD • Department of Biomedical Sciences, Section of General Pathology, Modena, Italy

Wilco de Jager, PhD • Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

Gennaro De Libero, MD, PhD • Experimental Immunology, Department of Research, University Hospital Basel, Basel, Switzerland

Paolo Dellabona, MD, PhD • Experimental Immunology Unit, Cancer Immunotherapy and Gene Therapy Program, Department of Biology and Biotechnology, San Raffaele Scientific Institute, Milan, Italy

Lurdes Duarte, Dipl. Biol. • Instituto Gulbenkian de Ciência, Oeiras, Portugal

Johannes H. Fruhaufl, MD, PhD • GI Cancer Laboratory, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Sonia Gavasso • Neurology Research Lab, Haukeland University Hospital, Gamle, Hovedgårdning, Bergen, Norway

Enrico Lugli, BSc • Department of Biomedical Sciences, Section of General Pathology, Modena, Italy

Sabrina Mariotti, PhD • Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Roma, Italy

Thu A. Nguyen, BSc • GI Cancer Laboratory, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Roberto Nisini, MD • Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Roma, Italy

Elisabetta Padovan, Prof. PhD • Universidade de Lisboa, Faculdade de Medicina, Lisboa, Portugal

Berent Prakken, Prof. MD, PhD • Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

Maurizio Provenzano, MD • Department of Urology, University Hospital of Zurich, Zurich, Switzerland
Contributors

Ger T. Rijkers, PhD • Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands

Wolfgang W.A. Schamel, PhD • Department of Molecular Immunology, Max Planck Institute for Immunobiology, University of Freiburg, Freiburg, Germany

Giulio C. Spagnoli, MD • Institute of Surgical Research and Hospital Management, University Hospital Basel, Basel, Switzerland

Angus Stock, BSc • Nuffield Department of Clinical Medicine, Weatherall Institute of Molecular Medicine, Oxford, UK

Mahima Swamy, MSc, ME • Department of Molecular Immunology, Max Planck Institute for Immunobiology, University of Freiburg, Freiburg, Germany

Elena Tonti, PhD • Experimental Immunology Unit, Cancer Immunotherapy and Gene Therapy Program, Department of Biology and Biotechnology, San Raffaele Scientific Institute, Milan, Italy

Leonarda Troiano, BSc • Department of Biomedical Sciences, Section of General Pathology, Modena, Italy

Paul Zajac, PhD • University Hospital Basel, Institute of Surgical Research and Hospital Management, Basel, Switzerland
Color Plates

Color Plate 1: Multidimensional analysis of human PBMC stimulated with either IL-6 (green), IL-4 (red) or left untreated (blue). Cells were fixed and permeabilized following protocol 3.2 and stained simultaneously with antibody cocktail A. Top panels show superimposed dot plots and histograms for T-cells (CD3\(^+\)), the bottom panels show B-cells (CD20\(^+\)). In overlays the induction of specific phosphorylation events are clearly identifiable. (see discussion on p. 41)

Color Plate 2: PBMC were stimulated with indicated cytokines, fixed and permeabilized according to protocol 3.2. T-cells (CD3\(^+\)) and B-cells (CD20\(^+\)) were gated according to markers while monocytes were gated in scatter plot. Open histograms represent untreated cells, filled histograms stimulated cells. Induction of phosphorylation is clearly identifiable (filled yellow histograms). (see discussion on p. 41)

Color Plate 3: Visualization of the data generated by the FACS analysis following protocol 3.2. The columns represent the cell subsets, T-cells, B-cells, monocytes. Each row represents a cytokine stimulation stained with one of the antibody cocktails and subsequently analyzed for the indicated phosphoprotein. The color of each block represents the fold change (log\(_2\)) in MFI in the channel corresponding to the analyzed phosphorylated protein. (see discussion on p. 42)