Bone Densitometry in Clinical Practice
BONE DENSITOMETRY IN CLINICAL PRACTICE
APPLICATION AND INTERPRETATION

THIRD EDITION

SYDNEY LOU BONNICK, MD, FACP
Clinical Research Center of North Texas, Denton, TX

Foreword by
PAUL D. MILLER, MD, FACP
Colorado Center for Bone Research, Lakewood, CO

Humana Press
The third edition of Bone Densitometry in Clinical Practice by Dr. Sydney Lou Bonnick is the crown jewel in her seminal efforts to educate us all in the fundamentals as well as the advanced applications of bone densitometry. This edition shares common themes of her life’s work: accuracy in all she does and precision in her science. One cannot, put very simply, find another book on bone densitometry that compares to the thoroughness of her work, and, in that regard, this book should be on the shelf of every medical library, medical student, house-officer, academic faculty member, practicing clinician, and radiology technologist – this edition offers each and every one at every level the latest and greatest in bone densitometry.

Since her pioneering work in bone densitometry which preceded by years the publication of her First edition of Bone Densitometry in Clinical Practice in 1998, Dr Bonnick has provided us an enduring education of how the science of DXA can be applied in the management of osteoporosis as well as distinctly different metabolic diseases traditionally not considered for DXA use. These include, for example, aortic calcium scoring in assessing risk for cardiovascular disease and the associations between BMD levels and breast cancer; body composition with assessment of visceral fat, an increasingly important measurement in the diagnosis and management of the “metabolic syndrome” as science keys in on the links between the adipocyte and bone metabolism. Body composition measurements also take on more importance at the other extreme: in the management of diseases associated with very low body mass index (e.g. anorexia, bulimia, the athletic triad) and will evolve as a means to study the associations between muscle mass and bone mass as pharmaceuticals are developed that influence the sarcolemma and bone cells. The expanded DXA application of hip structural analysis (HSA) has now allowed DXA to be used in measuring interventions that affect the cross-sectional moment of inertia and cortical bone size by assessing the effect of newer pharmacologials and the mechanostats that influence bone strength by mechanisms independent of areal BMD.

There is more guidance in this third edition in assessing fracture risk beyond bone mineral density measurements alone but still emphasis that the highly under detected prior vertebral fracture, like all low-trauma fractures, carries the greatest weight in fracture risk prediction. Thus, DXA’s improved application of vertebral fracture assessment (VFA) using higher resolution imaging is the best and lowest radiation technique to detect the highly prevalent non-clinical vertebral compression fracture. Wider implementation of VFA, whose CMS recognized indications for performance were spearheaded by The International Society for Clinical Densitometry (ISCD), should enable all involved in the management of osteoporosis patients to better select those patients at highest fracture risk. In that regard, Dr. Bonnick discusses the evolution as well as the pros and cons of the available fracture risk assessment tools that incorporate independent risk factors for fracture risk assessment (such as FRAX™ and FRAX™ precursors) as well as the National Osteoporosis Foundation’s Clinicians Guide, that help guide clinicians in deciding on pharmacological intervention for osteoporosis at a broader level than simply provided by FRAX™.
In this pivotal textbook there are new chapters on radiation safety and assessment for secondary causes of bone fragility – issues that are important to all primary care and specialists who perform bone mass measurements and advise patient management decisions.

Finally, Dr. Bonnick has incorporated the recent ISCD Position Development Conferences (PDCs), both the fourth adult and the first pediatric into her text and has an entire appendix entirely devoted to the PDCs, which serve to advance the unanswered questions concerning DXA applications.

Bone densitometry quality control and performance and its subsequent clinical application are an entire science in their own right. If individuals performing DXA follow the advice provided by Dr. Bonnick in this third edition, patient care will be elevated to a very high quality. Health care professionals and payers of medical services who study this book will realize that DXA output goes far, far beyond a printed computer sheet. Proper DXA performance demands detail and clinical application and Dr. Bonnick’s text provides the steps to achieve this excellence.

As I stated in the final sentences of the FOREWORD of her second edition, I am deeply honored to be asked by her to contribute to this introduction of a text that is symbolic of Dr. Sydney Bonnick’s devotion to this field. I continue to learn from her and anyone who is privileged enough to know her and also read this outstanding piece of work will also benefit from her tremendous grasp of bone densitometry science and clinical application.

Paul D. Miller, MD, FACP
Distinguished Clinical Professor of Medicine
University of Colorado Health Sciences Center
Medical Director
Colorado Center for Bone Research
Lakewood, Colorado
Bone densitometry is a fascinating field of medicine. Even in its earliest phases of development, densitometry incorporated aspects of imaging, physics, quantitative analysis, statistics, and computer technology that were applied in the diagnosis and management of multiple disease states. This extraordinary combination of attributes, however, left densitometry without a well-defined niche in clinical medicine. Imaging has traditionally been the purview of the radiologist. Quantitative analysis is more familiar to the pathologist. Metabolic bone disease has been the concern of the internist, rheumatologist, or endocrinologist and occasionally the nephrologist and orthopedist. And of course, physics, statistics, and computer technology have been left to those hardy souls who enjoy such things.

In 1988, when X-ray-based densitometers began to rapidly replace isotope-based densitometers, the door was opened for any medical specialty to perform densitometry. And yet, without a well-defined niche, without a specialty to champion the technology, there were no physicians who, by training, were immediately experts in the utilization of the technology.

In 1983, when I began working with dual-photon absorptiometry, the manufacturers provided a 4-hour inservice at the time of machine installation along with a brief operator’s manual and the promise of technical support whenever it was needed. There were no ongoing programs of continuing education in the performance of densitometry or in the interpretation of the data that it generated. There was no supply of trained densitometry technologists. Conferences on osteoporosis were infrequent and lectures on densitometry were decidedly rare. As a clinical tool, densitometry was viewed with skepticism. None of the notable fracture trials had yet been published. Indeed, these would not come for approximately 10 years. Clinicians, unable to noninvasively measure bone density in the past, saw little need for the ability to do so. The one disease in which densitometry seemed most applicable, osteoporosis, was largely viewed as an unalterable component of aging making the measurement of bone density superfluous.

Certainly much has changed since then, both for good and for ill. With the ability to measure bone density, many disease states are now known to be characterized, at least in part, by demineralization. Suddenly, it is not only osteoporosis for which the technology can provide information crucial to disease management. And osteoporosis itself is certainly no longer viewed as unassailable. The fracture trials are published. Therapeutic and preventive efficacy of many drugs has now been documented. And the disease itself can now be defined based on the measured level of bone density. Although the technology is still properly viewed as a quantitative analytical technique, imaging with densitometry is progressing so rapidly that the time has come when some aspects of plain skeletal radiography are being superseded by imaging densitometry.

But as strange as it may seem, the technology itself is in danger of becoming so devalued that improvements in accessibility and advances in applications may be lost. Although densitometry is still underutilized, the number of devices has steadily increased. The number of individuals involved in the performance of densitometry has
steadily increased. But insistence on quality densitometry has not kept pace. There are those who perform bone densitometry for whom it is ultimately of little importance. There may be no attention to quality control of the devices, no learned supervision of the technologist, and little concern for the ramifications of inaccurate or obsolete reporting of densitometry results. In these circumstances, little value and attention is given to bone densitometry. Not surprisingly then, third party payers, the public, and our non-densitometrist physician colleagues have begun to attach little value to densitometry as well. This is a tragedy, as the advances of the last 20 years may be potentially wasted.

In 1990, Dr. Paul Miller and I independently began teaching courses in bone densitometry for the physician and technologist. The physicians who attended these courses came from all specialties. The technologists were RTs, MRTs, RNs, PAs, and nursing assistants. With the publication of the first edition of Bone Densitometry in Clinical Practice in 1998, I hoped to reach many more physicians and technologists who wished to become proficient in the application and interpretation of bone densitometry. In 2002, my technologist, Lori Lewis, and I published the first edition of Bone Densitometry for Technologists. This volume was intended solely for technologists, regardless of background, who worked in the field of densitometry. Although much of the requisite information and skill in densitometry are common to physicians and technologists alike, the unique demands placed on the densitometry technologist made such a volume both appropriate and necessary. The second edition of Bone Densitometry for Technologists was published in 2006. The second edition of Bone Densitometry in Clinical Practice was published in 2004.

Some, but not all, of our concerns in 2009 are vastly different from 1998. Unlike the situation in 1998, there are few locales in which bone densitometry is not available. Many physicians, clinics, and hospitals own densitometers. The number and types of devices have proliferated at a remarkable rate. It is rare to encounter a physician who does not yet know that fracture risk can be predicted with a single bone mass measurement. Our concerns are no longer access to densitometry and convincing the practicing physician that fracture risk can be predicted. But some concerns remain the same. Should every woman have a bone density measurement and if so, when? Can the World Health Organization criteria for the diagnosis of osteoporosis in postmenopausal Caucasian women be used to diagnose osteoporosis in women of other races or men of any race? Should the diagnosis of osteoporosis be restricted to bone density measurements of the proximal femur? Can peripheral skeletal sites be used to diagnose osteoporosis? How should an individual’s risk of fracture be expressed? Can or should bone densitometry be used to determine efficacy of therapeutic agents in the treatment of osteoporosis? None of these concerns are new or esoteric. They go straight to the heart of how and when we use densitometry and interpret the data in the care of our patients. Whether you are new to the field or have worked in densitometry for 20 years, the issues are the same. All of us must ensure that quality control procedures are instituted and followed, precision studies are done, and data are properly interpreted. In 2009, however, perhaps because we are victims of our own success, the increase in the number of devices and number of individuals involved in densitometry has contributed to occasional misuse of the technology and lapses in quality, which have raised the specter of devaluation.

The third edition of Bone Densitometry in Clinical Practice is substantially larger than the first. New chapters have been added, even since the second edition of the book, which reflect both the new applications for densitometry and the evolving needs of the
densitometrist. Chapter 1 is a review of densitometry technologies that spans the earliest attempts to quantify bone density in the mandible in the late 1800s to the modern technologies of DXA, QCT, and QUS. Chapter 2 looks at the unique aspects of gross skeletal anatomy in densitometry and aspects of bone physiology relevant to the interpretation of bone density data. Chapter 3, which deals with statistics, is intended as an overview only. While most clinicians are familiar with statistical concepts like the mean, standard deviation, and significance, there are few if any areas of clinical medicine in which the application of statistical principles has assumed such a prominent role as in bone densitometry. As the reader will find, an understanding of some basic statistical concepts is imperative in the practice of densitometry. Chapter 3 is not intended to replace a review of more thorough statistical texts, but it is intended to ease the pain that the contemplation of such texts can engender. Chapter 4 reviews issues of machine quality control that are often underappreciated in clinical settings but which profoundly affect the validity of the data generated by the densitometers. Chapter 5 is new to this edition and is a review of radiation safety issues for the non-radiologist. Although radiation safety in clinical practice is not a major concern for the densitometrist, knowledge of radiation safety issues is requisite in the practice of densitometry. Chapter 6 addresses the differences in bone density measurements among the various manufacturers and the attempts at standardization of bone density measurements among manufacturers when bone density is measured at the same skeletal site on devices from different manufacturers.

Two of the last eight chapters in this edition are new to this volume. Chapters 7 and 8 deal with the selection of patients for densitometry measurements. Chapter 7 discusses and compares the guidelines from major organizations as they have evolved over the years. Chapter 8 deals with the various questionnaires and indices that have been developed to help patients identify themselves as candidates for bone mass measurements. These indices are deceptively simple in their final form, belying the very complex development process behind them. Consequently, the initial skepticism with which most of these indices have been met is understandable. Nevertheless, they are extremely useful in many circumstances. Chapters 9, 10, and 11 deal with the specific densitometry applications of diagnosis of osteoporosis, fracture risk prediction, and monitoring changes in bone density. Diagnosis and fracture risk prediction are separate entities and both remain the subject of some controversy, as previously noted. Chapter 11, which deals with monitoring changes in bone density, has been updated and expanded and includes a discussion of the statistical concept of regression to the mean and its relevance, or lack thereof, to monitoring bone density. It is an important concept to understand as it is still incorrectly used to diminish the value of monitoring changes in bone density. Chapter 12, which addresses secondary causes of bone loss, is new to this edition, replacing the chapter in earlier editions in which various articles relating to causes of bone loss were abstracted. When low bone density or osteoporosis is identified, the referring physician may look to the densitometrist for guidance in the evaluation of the patient to exclude secondary causes of bone loss. In this chapter, some of the more common differential diagnoses and the relevant evaluations to exclude each are reviewed. Chapter 12 is intended for the non-metabolic bone disease specialist densitometrist. Chapter 13 is also new to this edition and focuses on the new applications for DXA such as vertebral fracture assessment, aortic calcification scoring, hip structure analysis, and assessment of visceral fat. Finally, the challenge of bringing all this information to bear on the interpretation of the numerical densitometry data is addressed in Chapter 14. Although it is
one of the shorter chapters in the book, its importance should not be underestimated. The reality is that an inadequate or unread report will negate the expertise of the densitometrist and technologist as well as the promise of the technology. Finally, in Chapter 15, the technical specifications of densitometry devices currently approved for use in the United States are listed. These specifications may change without notice; so, the reader is encouraged to contact the manufacturer directly if more information is desired. Contact information for the various manufacturers can be found in Appendix I.

The appendices are an attempt to pull together reference information in a convenient location to enable the physician to refer to the information quickly, without searching the text. An entire appendix, Appendix V, has been devoted to the 2007 ISCD guidelines. The 1998 NHANES III reference database and native databases from the major manufacturers of central DXA devices will be found in Appendices IX-XII. The CD-ROM that accompanies this book contains several files that the densitometrist should find useful in every day practice as well as a study guide that can be completed for continuing education credit. The contents of the CD are described in Appendix XIV.

In a few circumstances in this text, data has been presented from published abstracts, rather than from peer-reviewed, published articles. This was done in the interest of providing information rapidly. The reader should be cautioned that data presented in abstract form might change slightly when it is finally published in a peer-reviewed journal. Some data presented in abstract form is never published in a peer-reviewed journal for a variety of reasons.

As this text has evolved over the years, it has essentially become a text on the use of DXA in clinical practice. Other technologies are discussed and should not be dismissed by the clinician. Some technologies provide measurements that are biologically different from those obtained with DXA. All of the technologies are remarkably accurate and when utilized correctly, very precise. But the evolution of the clinical criteria for the diagnosis of osteoporosis and the prediction of fracture risk have created a circumstance in which DXA measurements of the spine and proximal femur are the measurements that are ultimately clinically useful. It is perhaps unfortunate that this is so, in that truly remarkable technologies consequently have little practical clinical use. Nevertheless, it is the circumstance in which we find ourselves and is reflected in the focus of this book.

Bone densitometry is an extraordinary clinical tool. It provides a safe, non-invasive window to the skeleton. Through that window a physician can obtain vital clinical information that enhances the management of the patient that cannot currently be obtained in any other way. So, to whom in medicine does densitometry belong? To no one specialty in particular and to every specialty in general as long as the physician and technologist are committed to learning the unique aspects of this technology and the proper interpretation of the data that it generates. The technology itself is superb. Bone density can be measured with superior accuracy in virtually every region of the skeleton. The machines are capable of the finest precision of any quantitative technique in use in clinical medicine today. But the machines will perform only to the level of the expertise of those who operate them. And the data that they generate will only be as useful as the clarity of the interpretation that is provided by the densitometrist. It is hoped that this volume will be useful in helping the densitometrist fulfill the potential that the technology holds for contributing to the highest quality of patient care and disease prevention and management.

Sydney Lou Bonnick, MD, FACP
Numerous individuals have contributed to the content of this edition of Bone Densitometry in Clinical Practice. My gratitude is extended to all of them and in particular to: Tom Sanchez and Kathy Dudzek of Norland Medical Systems, a CooperSurgical Company; Dr. Mary Porter of Procter & Gamble; Dr. Howard Barden and Sean O’Sullivan of GE Healthcare; Mary Ann Barrick, RT and Dr. Kevin Wilson of Hologic, Inc.; Jakob Algulin of Sectra Imtec AB; Thomas Hessel of Osteometer Meditech; Chrystele Zawislack of Orthometrix; Imbar Vana of Sunlight Medical, Ltd; Roger Schulte of Image Analysis, Inc.; Dr. Ken Faulkner; Dr. Harry Genant; Dr. Richard Wasnich; Dr. Elliot Schwartz; Dr. Majorie Luckey; Dr. Michael McClung; and Dr. Paul Miller.

I would also like to thank those authors and publishers who allowed me to reproduce their work in the interest of continuing education.

And a special word of thanks to my editor, Paul Dolgert of Humana Press.
DEDICATION

For Margery Winston and Eliza Calvert Hall
and Cora Jane Spiller and Lynn Niedermeier, who helped me find them.
Contents

Foreword v
Preface vii
Acknowledgments xi
Dedication xiii
Continuing Medical Education xxv

Chapter 1: Densitometry Techniques .. 1

- Plain Radiography in the Assessment of Bone Density 1
- Qualitative Morphometry ... 2
 - Qualitative Spinal Morphometry 2
 - The Singh Index .. 3
- Quantitative Morphometric Techniques 4
 - Calcar Femorale Thickness 4
 - Radiogrammetry .. 4
 - The Radiologic Osteoporosis Score 5
- Radiographic Texture Analysis (RTA) and Spatial Anisotropy Analysis Utilizing Plain Radiography 6
- Radiographic Texture Analysis 6
- Measurements of Spatial Anisotropy 7
- Radiographic Photodensitometry 8
- Radiographic Absorptiometry 9
- Photon Absorptiometry Techniques 11
 - Single-Photon Absorptiometry 12
 - Dual-Photon Absorptiometry 13
 - Dual-Energy X-ray Absorptiometry 16
 - Peripheral DXA .. 20
 - Single-Energy X-ray Absorptiometry 21
 - Quantitative Computed Tomography 21
 - Peripheral QCT .. 26
 - High-Resolution Quantitative Computed Tomography 26
- Quantitative Ultrasound Bone Densitometry 27
- References ... 30

Chapter 2: Skeletal Anatomy in Densitometry 35

- Characterizing the Skeleton in Densitometry 35
 - The Axial and Appendicular Skeleton 35
 - The Weight-Bearing and Non-weight-Bearing Skeleton 36
 - The Central and Peripheral Skeleton 37
 - The Trabecular/Cortical Composition of the Skeleton 37
 - Forearm Composition .. 38
Contents

- Vertebral Composition .. 39
- Femoral Composition .. 39
- All Sites ... 39
- The Spine in Densitometry .. 40
 - Vertebral Anatomy ... 40
 - Artifacts in PA or AP Spine Densitometry 45
 - Vertebral Fractures ... 46
 - Degenerative Changes and Dystrophic Calcification 47
 - Other Causes of Artifacts in PA and AP Lumbar Spine Studies 53
 - The Effect of Vertebral Rotation on PA Lumbar Spine Bone Density 56
- The Spine in the Lateral Projection 56
- The Proximal Femur in Densitometry 58
 - Proximal Femur Anatomy ... 58
 - The Effect of Rotation on BMD in the Proximal Femur 59
 - The Effect of Leg Dominance on BMD in the Proximal Femur 62
 - The Effect of Scoliosis, Osteoarthritis, Osteophytes, Surgery, and Fracture on BMD in the Proximal Femur 62
 - Single vs. Dual Proximal Femur Bone Density Measurements 62
- The Forearm in Densitometry ... 64
 - Nomenclature .. 64
 - The Effect of Arm Dominance on Forearm BMD 65
 - The Effect of Artifacts on BMD in the Forearm 67
- The Metacarpals, Phalanges, and Calcaneus 68
- Bone Physiology .. 68
 - Bone Growth, Modeling, and Remodeling 71
 - Bone Modeling .. 72
 - Bone Remodeling .. 72
 - The Basic Multicellular Unit in Bone Remodeling 73
- References ... 75

Chapter 3: A Statistical Overview for the Non-statistician Densitometrist 79

- The Mean, Median, Mode, Variance, and Standard Deviation 79
 - The Mean ... 80
 - The Median .. 80
 - The Mode ... 80
 - The Variance and Standard Deviation 81
- Coefficient of Variation .. 82
- The Gaussian or Normal Distribution 82
- Standard Scores ... 83
 - The z-Score in Statistics ... 84
 - The T-Score in Statistics .. 84
 - Standard Scores on Bone Density Reports 84
- Measures of Risk .. 88
 - Prevalence and Incidence .. 88
 - Prevalence ... 88
 - Incidence ... 89
 - Absolute, Relative, and Attributable Risk 89
<table>
<thead>
<tr>
<th>Contents</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Risk</td>
<td>89</td>
</tr>
<tr>
<td>Relative Risk</td>
<td>89</td>
</tr>
<tr>
<td>Attributable Risk</td>
<td>90</td>
</tr>
<tr>
<td>Odds Ratios</td>
<td>91</td>
</tr>
<tr>
<td>Confidence Intervals</td>
<td>91</td>
</tr>
<tr>
<td>Accuracy and Precision</td>
<td>93</td>
</tr>
<tr>
<td>Accuracy</td>
<td>94</td>
</tr>
<tr>
<td>Precision</td>
<td>94</td>
</tr>
<tr>
<td>Types of Data</td>
<td>95</td>
</tr>
<tr>
<td>Quantitative Data</td>
<td>95</td>
</tr>
<tr>
<td>Qualitative or Categorical Data</td>
<td>96</td>
</tr>
<tr>
<td>Data and Variables</td>
<td>96</td>
</tr>
<tr>
<td>Correlation</td>
<td>96</td>
</tr>
<tr>
<td>Statistical Significance and the P Value</td>
<td>97</td>
</tr>
<tr>
<td>Regression Analysis</td>
<td>98</td>
</tr>
<tr>
<td>Statistical Evaluations of Diagnostic Tests</td>
<td>99</td>
</tr>
<tr>
<td>Sensitivity and Specificity</td>
<td>99</td>
</tr>
<tr>
<td>Likelihood Ratios</td>
<td>101</td>
</tr>
<tr>
<td>Receiver Operating Characteristic Curves</td>
<td>102</td>
</tr>
<tr>
<td>Regression to the Mean</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>104</td>
</tr>
</tbody>
</table>

Chapter 4: Quality Control

<table>
<thead>
<tr>
<th>Phantoms</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>The European Spine Phantom</td>
<td>106</td>
</tr>
<tr>
<td>The Bona Fide Spine Phantom</td>
<td>107</td>
</tr>
<tr>
<td>The Hologic Spine and Hip Phantoms</td>
<td>107</td>
</tr>
<tr>
<td>The Lunar Spine Phantom</td>
<td>108</td>
</tr>
<tr>
<td>The Norland Spine Phantom</td>
<td>109</td>
</tr>
<tr>
<td>Using the Phantom to Create Control Tables and Charts</td>
<td>110</td>
</tr>
<tr>
<td>Shewhart Rules and Cusum Charts</td>
<td>114</td>
</tr>
<tr>
<td>Shewhart Rules</td>
<td>114</td>
</tr>
<tr>
<td>CUSUM Charts</td>
<td>116</td>
</tr>
<tr>
<td>Automated Quality Control Procedures</td>
<td>118</td>
</tr>
<tr>
<td>Replacing a Densitometer</td>
<td>122</td>
</tr>
<tr>
<td>References</td>
<td>125</td>
</tr>
</tbody>
</table>

Chapter 5: Radiation Safety in X-Ray Densitometry

Radiation Basics	127
Radiation Quantities	128
The Curie	128
The Roentgen	128
The Rad	128
The Rem	129
The Effective Dose Equivalent	129
Harmful Effects of Ionizing Radiation	130
Acute Lethal Radiation Syndromes	130
Local Tissue Damage from Radiation .. 131
The Skin .. 131
The Ovaries and Testes ... 131
The Bone Marrow and Blood ... 132
Late Effects of Ionizing Radiation .. 132
Radiation Doses in Densitometry .. 132
Radiation Protection Programs ... 134
Protection of the Public ... 135
Protection of the Patient ... 136
Protection of the Technologist ... 137
Time, Distance, and Shielding ... 137
Personnel Monitoring Devices .. 138
The Pregnant Technologist .. 139
References .. 139

Chapter 6: Bone Density Data Among Technologies and Manufacturers 141

DPA to DXA ... 142
Hologic DXA and Lunar DPA ... 142
Lunar DXA and Lunar DPA .. 143
Hologic DXA, Lunar DXA, and Lunar DPA 143
DXA: From Lunar to Hologic to Norland 144
Hologic DXA and Norland DXA ... 145
Lunar DXA and Hologic DXA .. 145
Standardization of Absolute BMD Results 145
Standardization of Central DXA Absolute BMD Values 146
Standardization of DXA BMD Results for the Femoral Neck,
 Trochanter, and Ward’s Area ... 148
Standardization of Forearm DXA Results 149
The Utility of the sBMD ... 151
DXA: Machine to Machine Within Manufacturers 151
DXA: Pencil-Beam to Fan-Array .. 152
Reference Databases .. 153
 Manufacturer’s “Native” Databases ... 154
NHANES III .. 156
Areal and Volumetric Densities .. 157
 Bone Mineral Apparent Density .. 158
Calculating “Average” Spine Bone Densities 159
References .. 160

Chapter 7: Selecting Patients for Bone Mass Measurements:
 Clinical Guidelines ... 163

Guidelines of the International Society for Clinical Densitometry 164
1996 ISCD Guidelines ... 164
2007 ISCD Guidelines ... 166
National Osteoporosis Foundation Guidelines 167
1988 NOF Guidelines ... 167
1998 NOF Guidelines ... 168
<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 NOF Guidelines</td>
<td>170</td>
</tr>
<tr>
<td>2008 NOF Guidelines</td>
<td>170</td>
</tr>
<tr>
<td>Osteoporosis Society of Canada/Osteoporosis Canada</td>
<td>171</td>
</tr>
<tr>
<td>1996 Osteoporosis Society of Canada Guidelines</td>
<td>171</td>
</tr>
<tr>
<td>2002 OSC Guidelines</td>
<td>171</td>
</tr>
<tr>
<td>2006 Osteoporosis Canada Guidelines</td>
<td>171</td>
</tr>
<tr>
<td>American Association of Clinical Endocrinologists’ Guidelines</td>
<td>172</td>
</tr>
<tr>
<td>1996 American Association of Clinical Endocrinologists’ Guidelines</td>
<td>172</td>
</tr>
<tr>
<td>The 2001 AACE Guidelines</td>
<td>173</td>
</tr>
<tr>
<td>The 2003 AACE Guidelines</td>
<td>174</td>
</tr>
<tr>
<td>Guidelines From the European Foundation for Osteoporosis and Bone Disease</td>
<td>174</td>
</tr>
<tr>
<td>1996 European Foundation for Osteoporosis and Bone Disease Guidelines</td>
<td>174</td>
</tr>
<tr>
<td>1997 EFFO Guidelines</td>
<td>176</td>
</tr>
<tr>
<td>2002 American College of Obstetricians and Gynecologists Recommendations for Bone Density Screening for Osteoporosis</td>
<td>176</td>
</tr>
<tr>
<td>The North American Menopause Society Guidelines</td>
<td>176</td>
</tr>
<tr>
<td>2002 The North American Menopause Society Guidelines</td>
<td>176</td>
</tr>
<tr>
<td>2006 NAMS Guidelines</td>
<td>177</td>
</tr>
<tr>
<td>2002 United States Preventive Services Task Force Recommendations</td>
<td>178</td>
</tr>
<tr>
<td>World Health Organization Task Force Recommendations</td>
<td>179</td>
</tr>
<tr>
<td>1999 World Health Organization Recommendations</td>
<td>179</td>
</tr>
<tr>
<td>2003 World Health Organization Recommendations</td>
<td>180</td>
</tr>
<tr>
<td>Guidelines for Bone Density Testing in Men Only</td>
<td>180</td>
</tr>
<tr>
<td>How do the Guidelines Compare?</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td>184</td>
</tr>
</tbody>
</table>

Chapter 8: Selecting Patients for Bone Mass Measurements: Self-Assessment Indices

- Simple Calculated Osteoporosis Risk Estimation | 187 |
- Osteoporosis Risk Assessment Instrument | 188 |
- The Study of Osteoporotic Fractures Simple Useful Risk Factor System | 192 |
- Abone | 192 |
- The Osteoporosis Self-Assessment Tool | 193 |
- Weight Selection Criteria | 194 |
- The Black Fracture Index | 197 |
- Comparing The Performance of Self-Assessment Questionnaires for Women | 198 |
- The Male Osteoporosis Risk Estimation Score | 200 |
- Summary | 204 |
- References | 205 |
- References | 206 |

Chapter 9: Diagnosing Osteoporosis

- Conceptual Definitions of Osteoporosis | 209 |
- 1994 World Health Organization Criteria for the Diagnosis of Osteoporosis Based on the Measurement of BMD | 210 |
The Clinical Dilemma .. 212
Peripheral Site T-Score Equivalents for the Diagnosis of Osteopenia and Osteoporosis ... 215
Changing the Definition of Osteoporosis .. 219
Diagnosing Osteoporosis in Men .. 220
Additional Considerations in Site Selection for Diagnosis 223
References .. 224

Chapter 10: Predicting Fracture Risk ... 227
The Prevalence of Fracture at Different Levels of BMD 227
Fracture Risk Prediction .. 228
Site-specific and Global Fracture Risk Prediction 228
Relative Risk Fracture Data .. 229
Global Fracture Relative Risk Data .. 229
Site-Specific Spine Fracture Relative Risk Data 230
Site-Specific Hip Fracture Relative Risk Data ... 231
Applying Relative Risk Data in Clinical Practice 232
Lifetime Risk Of Fracture .. 234
10-Year Fracture Probability .. 236
Remaining Lifetime Fracture Probability ... 238
The Fracture Threshold ... 240
Qualitative Risk Assessments .. 242
Predicting Fracture Risk in Men .. 242
FRAX™ ... 244
Fore FRC ... 248
The Black Fracture Index ... 249
Limitations of Fracture Risk Algorithms ... 252
References .. 253

Chapter 11: Monitoring Changes in Bone Density 257
The Concept of Precision ... 258
Performing a Precision Study ... 258
Short-Term Precision Studies ... 260
Mathematical Procedures Used to Calculate Precision 262
Long-Term Precision Studies ... 264
Applying the Precision Value to Serial Measurements 265
The Determination of Least Significant Change 265
When Should a Measurement Be Repeated? .. 267
A Case in Point ... 268
More Sophisticated Issues in the Calculation and Application of the LSC ... 270
Determining the Level of Confidence for Any Magnitude of Change and Precision ... 270
Chapter 14: Reporting Densitometry

Elements of Densitometry Reports Requested by Primary Care Physicians . 358
Densitometry Center Reporting Practices in the United States . 358
Recommendations from the International Society for Clinical
Densitometry for Bone Density Reporting . 359
Reporting the Diagnosis . 360
Reporting Fracture Risk . 362
Recommending Evaluations For Secondary Causes of Bone Loss . 363
Treatment Recommendations . 364
Recommending a Follow-Up Densitometry Study . 365
Assessment of Risk Factors . 366
Reporting Serial Studies . 366
The Challenge in Reporting Densitometry Results . 367
Dual Energy X-ray Absorptiometry Bone Density Report . 368
Conclusions and Recommendations . 368
Report Details . 368
General . 368
PA Lumbar Spine and Left proximal Femur Study . 368
References . 370

Chapter 15: FDA-Approved Densitometry Devices

Computer-Enhanced Radiogrammetry . 371
dxr-onlineTM . 371
Computer-Enhanced Radiographic Absorptiometry . 372
Automated OsteoGram® . 372
MetriScanTM . 372
Central X-Ray Densitometers . 373
Contents

<table>
<thead>
<tr>
<th>Product/Device</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphi™</td>
<td>373</td>
</tr>
<tr>
<td>Discovery™</td>
<td>375</td>
</tr>
<tr>
<td>DPX Bravo®</td>
<td>377</td>
</tr>
<tr>
<td>DPX Duo®</td>
<td>378</td>
</tr>
<tr>
<td>DPX-IQ®</td>
<td>380</td>
</tr>
<tr>
<td>DPX MD™</td>
<td>382</td>
</tr>
<tr>
<td>DPX MD+™</td>
<td>384</td>
</tr>
<tr>
<td>DPX-NT™</td>
<td>385</td>
</tr>
<tr>
<td>Excell™</td>
<td>386</td>
</tr>
<tr>
<td>Excell™ plus</td>
<td>387</td>
</tr>
<tr>
<td>Expert®-XL</td>
<td>389</td>
</tr>
<tr>
<td>Explorer™</td>
<td>390</td>
</tr>
<tr>
<td>iDXA™</td>
<td>391</td>
</tr>
<tr>
<td>Prodigy™</td>
<td>394</td>
</tr>
<tr>
<td>QDR® 4500 A</td>
<td>395</td>
</tr>
<tr>
<td>QDR® 4500 C</td>
<td>396</td>
</tr>
<tr>
<td>QDR® 4500 SL</td>
<td>398</td>
</tr>
<tr>
<td>QDR® 4500 W</td>
<td>400</td>
</tr>
<tr>
<td>XR-46™</td>
<td>401</td>
</tr>
<tr>
<td>XR-600™</td>
<td>402</td>
</tr>
<tr>
<td>XR-800™</td>
<td>404</td>
</tr>
<tr>
<td>Peripheral X-Ray Densitometers</td>
<td></td>
</tr>
<tr>
<td>accuDEXA® Bone Mineral Density Assessment System</td>
<td>406</td>
</tr>
<tr>
<td>Apollo™</td>
<td>406</td>
</tr>
<tr>
<td>DexaCare® G4</td>
<td>407</td>
</tr>
<tr>
<td>DTX-200 DexaCare®</td>
<td>408</td>
</tr>
<tr>
<td>pDEXA®</td>
<td>411</td>
</tr>
<tr>
<td>PIXI® (Peripheral Instantaneous X-ray Imager)</td>
<td>412</td>
</tr>
<tr>
<td>XCT 2000L™</td>
<td>413</td>
</tr>
<tr>
<td>XCT 3000™</td>
<td>414</td>
</tr>
<tr>
<td>Ultrasound Bone Densitometers</td>
<td></td>
</tr>
<tr>
<td>Achilles+™</td>
<td>414</td>
</tr>
<tr>
<td>Achilles Express™</td>
<td>417</td>
</tr>
<tr>
<td>Achilles InSight™</td>
<td>418</td>
</tr>
<tr>
<td>DTU-one UltraSure®</td>
<td>419</td>
</tr>
<tr>
<td>McCue C.U.B.A.Clinical™ (Contact Ultrasound Bone Analyzer)</td>
<td>421</td>
</tr>
<tr>
<td>Omnisense® 7000S Ultrasound Bone Sonometer</td>
<td>421</td>
</tr>
<tr>
<td>Omnisense® 8000S Ultrasound Bone Sonometer</td>
<td>422</td>
</tr>
<tr>
<td>Sahara Clinical Bone Sonometer®</td>
<td>424</td>
</tr>
</tbody>
</table>

Chapter 16: Appendices

- Appendix I: Contact Information for Bone Densitometry
 Manufacturers and Organizations of Interest
 Conversion Formulas
- Appendix III: Formulas for the Calculation of Precision and Least Significant Change
Appendix IV: World Health Organization Criteria for the Diagnosis of Osteoporosis Based on the Measurement of Bone Density 443
Appendix V: 2007 ISCD Official Positions 445
Appendix VI: Guidelines for Bone Density Testing from Other Major Organizations 459
Appendix VII: Bone Mass Measurement Act of 1997 463
Appendix VIII: CPT/HCPCS Codes for Bone Densitometry 465
Appendix IX: 1998 NHANES III Proximal Femur Reference Data 467
Appendix X: Norland DXA Reference Data 477
Appendix XI: Hologic DXA Reference Data 483
Appendix XII: Lunar Reference Data 499
Appendix XIII: Densitometry Patient Demographic and Risk Factor Questionnaire 505
Appendix XIV: The CD-ROM Companion 509
Index 511
CONTINUING MEDICAL EDUCATION

RELEASE DATE
September 1, 2009

EXPIRATION DATE
September 1, 2012

ESTIMATED TIME TO COMPLETE
30 Hours

ACCREDITATION

We are pleased to award category 1 credit(s) toward the AMA Physician’s Recognition Award. By reading the instructions in Appendix XIV and by completing the review in the CD-ROM companion, you are eligible for up to 30 hours of category 1 credit. After answering all of the questions correctly, complete the review evaluation and enter the required identifying information on the certificate of course completion. This certificate is not valid until signed with authorized signature at the Foundation for Osteoporosis Research. The certificate may be printed one time only. Send the certificate and the required fee to the Foundation for Osteoporosis Research and Education for awarding of continuing education credits.

This activity is offered by the Foundation for Osteoporosis Research and Education, a CMA accredited provider. Physicians completing this course may report up to 30 hours of category 1 credits toward the California Medical Association’s Certification in Continuing Education and the American Medical Association’s Physician’s Recognition Award. Each physician should claim only those hours of credit that he/she actually spent in the activity.

This activity has been planned and implemented in accordance with the essential areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the Foundation for Osteoporosis Research and Education and Humana Press, a part of Springer Science+Business Media. The Foundation for Osteoporosis Research and Education is accredited by the California Medical Association to provide continuing medical education for physicians.

METHOD OF PARTICIPATION

Read the book carefully. Complete the posttest and evaluation/certificate to be found on the companion CD-ROM. There is a $150 fee for this activity. Credit for the activity...
is available until September 1, 2012. Additional directions for obtaining credit can be found on the companion CD-ROM.

Faculty and Disclosure

Sydney Lou Bonnick, MD
Clinical Research Center of North Texas
2921 Country Club Road, Ste. 101
Denton, Texas

Faculty for CME activities are expected to disclose to the activity audience any real or apparent conflict(s) of interest related to the content of the material they present. The following relationships have been disclosed:

Dr. Bonnick has nothing to disclose.

Provider Disclosure

The Foundation for Osteoporosis Research and Education is an independent organization that does not endorse specific products of any pharmaceutical concern and therefore has nothing to disclose. Humana Press does not endorse specific products of any pharmaceutical concern and therefore has nothing to disclose.

Intended Audience

This book is designed for physicians and technologists involved in the application of bone densitometry.

Overall Goal

The overall goal of this activity is to update the scientific knowledge and skills of physicians and technologists who manage patients with established osteoporosis or patients who may be at risk for developing osteoporosis.

Learning Objectives

Upon completion of this continuing medical education activity, participants should have improved overall knowledge, skills, and attitudes concerning the use of bone densitometry. Specifically, the objectives are:

1. To review the most clinically relevant aspects of interpreting bone density data.
2. To familiarize the physician with the resources found in the third edition of *Bone Densitometry in Clinical Practice*.
3. To emphasize potential pitfalls in interpreting and reporting densitometry results.
4. To familiarize the physician with current recommendations and standards for patient selection for testing and for densitometry reporting
5. To review the similarities and differences among the various densitometry techniques used in clinical practice
6. To review aspects of human anatomy unique to the field of densitometry

UNLABELED/UNAPPROVED USE DISCLOSURE

In accordance with ACCME standards for commercial support, the audience is advised that this CME activity may contain references to unlabeled or unapproved uses of drugs or devices.