Molecular Embryology

Second Edition
Molecular Embryology

Methods and Protocols

Second Edition

Edited by

Paul T. Sharpe
Department of Craniofacial Development,
King’s College London, London, UK

and

Ivor Mason
MRC Centre for Developmental Neurobiology,
King’s College London, UK

Humana Press
Preface

Most people have some interest in embryos; this probably results, in part, from their interest in understanding the biological origins of themselves and their offspring and, increasingly, concerns about how environmental changes such as pollution might affect human development. Obviously, ethical considerations preclude experimental studies of human embryos and, consequently, the developmental biologist has turned to other species to examine this process. Fortunately, the most significant conclusion to be drawn from the experimental embryology of the last two decades is the manner in which orthologous or closely related molecules are deployed to mediate similar developmental processes in both vertebrates and invertebrates. The molecular mechanisms regulating processes fundamental to most animals, such as axial patterning or axon guidance, are frequently conserved during evolution. (It is now widely believed that the differences between phyla and classes are the result of new genes, arising mostly by duplication and divergence of extant sequences, regulating the appearance of derived characters.)

Other vertebrates are obviously most likely to use the same developmental mechanisms as humans and, within the vertebrate subphylum, the apparent degree of conservation of developmental mechanism is considerable. It has long been recognized that particular vertebrate species offer either distinct advantages in investigating particular stages of development or are especially amenable to particular manipulations. No single animal can provide all the answers because not all types of experiments can be carried out on a single species. Traditionally, developmental biologists have worked on their particular experimental favorite, working, for example, solely on Drosophila, or Xenopus, or the mouse. In the last few years, this has started to change, and there are now increasing numbers of laboratories that have acquired the expertise to work on several different animals and are thus able to harness the experimental advantages of different developmental systems to address specific developmental questions. Alternatively, Developmental Biology departments are becoming organized so that they have expertise in several model organisms. It is the increasing necessity to be able to move between embryos of different vertebrate classes as a project progresses that prompted us to assemble Molecular Embryology: Methods and Protocols, Second Edition. We hope that it will allow researchers to familiarize
themselves with the various commonly studied vertebrate embryos, to make informed choices about which might be best suited to their investigations, and to understand the techniques by which they might be manipulated.

Sadly, while this book was going to press, Nigel Holder, one of its contributors, passed away. Nigel was an excellent developmental biologist, a founder of the Developmental Biology Research Group at King’s College, and had recently been appointed to the Chair of Anatomy and Human Biology at University College London. He was both a colleague and friend to us and to many of the other contributors to this volume. He is greatly missed.

Paul T. Sharpe
Ivor Mason
Preface to Second Edition

The five years or so between the current and first editions of this volume have seen perhaps the greatest period in growth and productivity in the field of Developmental Biology. This is reflected in the addition of new Chapters detailing techniques that have arisen during the intervening period including RNA interference, electroporation, “EC culture” of chick embryos, electroporation, new approaches for efficient production of transgenic zebrafish and microarrays.

We also thank the authors of other Chapters for updating their contributions since the last Edition. Some Chapters remain entirely unchanged, reflecting one of the great delights of this field, namely that “classical” techniques, unchanged for decades, are routinely employed alongside and to complement “state-of-the-art” approaches.

Finally, we would like to express our gratitude to The MRC, The Wellcome Trust and The BBSRC for supporting the research in our own laboratories. In addition, IM would like to thank the Leverhulme Trust for providing him with a Research Fellowship, which greatly facilitated the completion of this volume.

Paul Sharpe and Ivor Mason
London, June 2006
Contents

Preface .. v
Contributors... xi

Part I. The Mouse Embryo 1

1 The Mouse as a Developmental Model.. 3
 Paul T. Sharpe
2 Culture of Postimplantation Mouse Embryos 7
 Paul Martin and David L. Cockroft
3 Organ Culture in the Analysis of Tissue Interactions 23
 Irma Thesleff and Carin Sahlberg
4 Treatment of Mice with Retinoids In Vivo and In Vitro 31
 Gillian M. Morriss-Kay
5 Analysis of Skeletal Ontogenesis through Differential
 Staining of Bone and Cartilage ... 37
 Michael J. Depew
6 Cell Grafting and Labeling in Postimplantation Mouse Embryos 47
 Gabriel A. Quinlan, Poh-Lynn Khoo, Nicole Wong,
 Paul A. Trainor, and Patrick P.L. Tam
7 Production of Transgenic Rodents by the Microinjection
 of Cloned DNA into Fertilized One-Celled Eggs 71
 David Murphy
8 Cre Recombinase Mediated Alterations of the Mouse
 Genome Using Embryonic Stem Cells ... 111
 Anna-Katerina Hadjantonakis, Melinda Pirity,
 and András Nagy
9 Gene Trapping in Mouse Embryonic Stem Cells 133
 Jane Brennan and William C. Skarnes
10 Application of lacZ Transgenic Mice
 to Cell Lineage Studies ... 149
 Catherine M. Watson, Paul A. Trainor, Tatiana Radziewic,
 Gregory J. Pelka, Sheila X. Zhou, Maala Parameswaran,
 Gabriel A. Quinlan, Monica Gordon, Karin Sturm,
 and Patrick P. L. Tam
11 Transgenic RNA Interference to Investigate Gene
 Function in the Mouse .. 165
 Tilo Kunath
12 Mouse Primordial Germ Cells: *Isolation and In Vitro Culture* 187
Patricia A. Labosky and Brigid L. M. Hogan

13 Gene Transfer to the Rodent Embryo by Retroviral Vectors 201
Marla B. Luskin

PART II. THE CHICKEN EMBryo

14 The Avian Embryo: *An Overview* .. 223
Ivor Mason

15 Chick Embryos: *Incubation and Isolation* ... 231
Ivor Mason

16 New Culture .. 235
Amata Hornbruch

17 EC Culture: *A Method to Culture Early Chick Embryos* 255
Andrea Streit

18 Grafting Hensen’s Node .. 265
Claudio D. Stern

19 Grafting of Somites ... 277
Claudio D. Stern

20 Microsurgical Manipulation of the Notochord ... 289
Lúcia E. Alvares, Corinne Lours, Amira El-Hanfy, and Susanne Dietrich

21 Transplantation of Avian Neural Tissue .. 305
Sarah Guthrie

22 Grafting of Apical Ridge and Polarizing Region .. 313
Cheryl Tickle

23 Tissue Recombinations in Collagen Gels .. 325
Marysia Placzek

24 Quail–Chick Chimeras .. 337
Marie-Aimée Teillet, Catherine Ziller, and Nicole M. Le Douarin

25 Using Fluorescent Dyes for Fate Mapping, Lineage Analysis, and Axon Tracing in the Chick Embryo 351
Jonathan D.W. Clarke

26 Gene Transfer in Avian Embryos Using Replication-Competent Retroviruses .. 363
Cairine Logan and Philippa Francis-West

27 Electroporation in Avian Embryos .. 377
Jun-ichi Funahashi and Harukazu Nakamura

PART III. AMPHIBIAN EMBRYOS

28 An Overview of *Xenopus* Development ... 385
C. Michael Jones and James C. Smith

29 Mesoderm Induction Assays ... 395
C. Michael Jones and James C. Smith
30 Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian

 Ray Keller, Ann Poznanski, and Tamira Elul

31 A Method for Generating Transgenic Frog Embryos

 Shoko Ishibashi, Kristin L. Kroll, and Enrique Amaya

32 Axolotl/Newt

 Malcolm Maden

PART IV. ZEBRAFISH AND MEDAKA

33 The Zebrafish: An Overview of Its Early Development

 Nigel Holder and Qiling Xu

34 Small-Scale Marker-Based Screening for Mutations in Zebrafish Development

 Peter D. Currie, Thomas F. Schilling, and Philip W. Ingham

35 Microinjection and Cell Transplantation in Zebrafish Embryos

 Qiling Xu, Derek Stemple, and Katherine Joubin

36 Recent Advances in Meganuclease- and Transposon-Mediated Transgenesis of Medaka and Zebrafish

 Clemens Grabher and Joachim Wittbrodt

37 Retinoids in Nonmammalian Embryos

 Malcolm Maden

PART V. NONVERTEBRATE CHORDATES

38 Protochordates

 Peter W. H. Holland and Hiroshi Wada

PART VI. MOLECULAR TECHNIQUES

39 Subtractive Hybridization and Construction of cDNA Libraries

 Bruce Blumberg and Juan Carlos Izpisúa Belmonte

40 Differential Display of Eukaryotic mRNA

 Antonio Tugores and Juan Carlos Izpisúa Belmonte

41 Using DNA Microarrays

 Clare Pritchard, Peter Underhill, and Andy Greenfield

42 Profiling Gene Transcription in the Developing Embryo: Microarray Analysis on Gene Chips

 David Chambers and Andrew Lumsden

43 RT-PCR on Embryos Using Degenerate Oligonucleotide Primers

 Anthony Graham

44 Single-Cell RT-PCR cDNA Subtraction

 Ebrahim Sakhinia, Damian L. Weaver, César Núñez, Clare Brunet, Victoria Bostock, and Gerard Brady

45 In-Situ Hybridization of Radioactive Riboprobes to RNA in Tissue Sections

 Radma Mahmood and Ivor Mason
46 In-Situ Hybridization and Immunohistochemistry in Whole Embryos.. 687

Carol Irving

47 Wholemount In Situ Hybridization to Xenopus Embryos 697

C. Michael Jones and James C. Smith

48 Wholemount In Situ Hybridization to Amphioxus Embryos 703

Peter W.H. Holland

49 In-Situ Hybridization to Sections (Nonradioactive).......................... 707

Maria Rex and Paul J. Scotting

50 Immunohistochemistry Using Polyester Wax...................................... 717

Andrew Kent

51 Immunohistochemistry on Whole Embryos....................................... 725

Ivor Mason

52 Whole Embryo Assays for Programmed Cell Death 729

Anthony Graham

53 Protein Techniques: Immunoprecipitation, In Vitro Kinase Assays, and Western Blotting... 735

Clive Dickson

PART VII MICROSCOPY AND PHOTOGRAPHY

54 Microscopy and Photomicrography Techniques............................... 747

Richard J.T. Wingate

Index.. 773
Contributors

LÚCIA E. ALVARES • Department of Craniofacial Development, King’s College London, London, UK

ENRIQUE AMAYA • The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK

BRUCE BLUMBERG • Gene Expression Laboratory, Stem Cell Research Center, and Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA

VICTORIA BOSTOCK • School of Biological Sciences, University of Manchester, Manchester, UK

GERARD BRADY • School of Biological Sciences, University of Manchester, Manchester, UK

JANE BRENNAN • Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK

CLARE BRUNET • School of Biological Sciences, University of Manchester, Manchester, UK

DAVID CHAMBERS • MRC Centre for Developmental Neurobiology, King’s College London, London, UK

JONATHAN D. W. CLARKE • Department of Anatomy and Developmental Biology, University College, London, UK

DAVID L. COCKROFT • Formerly Imperial Cancer Research Fund, Oxford, UK

PETER D. CURRIE • Muscle Development Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia

MICHAEL J. DEPEW • Department of Craniofacial Development, King’s College London, London, UK

CLIVE DICKSON • Retired, Cancer Research UK, London, UK

SUSSANNE DIETRICH • Department of Craniofacial Development, King’s College London, London, UK

AMIRA EL-HANFY • Department of Craniofacial Development, King’s College London, London, UK

TAMIRA ELUL • Department of Biology, University of Virginia, Charlottesville, Virginia, USA

PHILIPPA FRANCIS-WEST • Department of Craniofacial Development, King’s College London, London, UK
Contributors

JUN-ICHI FUNAHASHI • Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

MONICA GORDON • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia

CLEMENS GRABHER • Developmental Biology Program, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

ANTHONY GRAHAM • MRC Centre for Developmental Neurobiology, King’s College London, London, UK

ANDY GREENFIELD • MRC Mammalian Genetics Unit, Harwell, UK

SARAH GUTHRIE • MRC Centre for Developmental Neurobiology, King’s College London, London, UK

ANNA-KATERINA HADJANTONAKIS • Memorial Sloan Kettering Cancer Center, New York, USA

BRIGID L. M. HOGAN • Cell and Molecular Biology Program, Duke University, Durham, North Carolina, USA

NIGEL HOLDER • Deceased, Department of Anatomy and Developmental Biology, University College, London, UK

PETER W. H. HOLLAND • Department of Zoology, University of Oxford, Oxford, UK

AMATA HORNBRUCH • Retired, MRC Centre for Developmental Neurobiology, King’s College London, London, UK

PHILIP W. INGHAM • Centre for Developmental Genetics, University of Sheffield, Sheffield, UK

CAROL IRVING • Department of Anatomy and Developmental Biology, University College, London, UK

SHOKO ISHIBASHI • The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK

JUAN CARLOS IZPISUA BELMONTE • Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA and The Center of Regenerative Medicine in Barcelona, Barcelona, Spain

C. MICHAEL JONES • Centre for Molecular Medicine, Singapore

KATHERINE JOUBIN • National Institute for Medical Research, Mill Hill, London, UK

RAY KELLER • Department of Biology, University of Virginia, Charlottesville, Virginia, USA

ANDREW KENT • School of Biomedical and Health Sciences, King’s College, University of London, London, UK

POH-LYNN KHOO • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
KRISTEN L. KROLL • Washington University School of Medicine, Department of Molecular Biology and Pharmacology, St. Louis, Missouri, USA

TILO KUNATH • Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK

PATRICIA A. LABOSKY • Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA

NICOLE M. LE DOUARIN • Institut d’Embryologie Cellulaire et Moléculaire, College de France, Nogent-sur-Marne, France

CAIRINE LOGAN • Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada

ANDREW LUMSDEN • MRC Centre for Developmental Neurobiology, King’s College London, London, UK

CORINNE LOURS • Department of Craniofacial Development, King’s College London, London, UK

MARLA B. LUSKIN • Department of Cell Biology, Emory University, Atlanta, Georgia, USA

MALCOLM MADEN • MRC Centre for Developmental Neurobiology, King’s College London, London, UK

RADMA MAHMOOD • Department of Pathology, Albert Einstein College of Medicine, New York, USA

PAUL MARTIN • Departments of Physiology and Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK

IVOR MASON • MRC Centre for Developmental Neurobiology, King’s College London, London, UK

GILLIAN M. MORRIS-KAY • Retired, Department of Human Anatomy and Genetics, University of Oxford, Oxford, UK

DAVID MURPHY • Laboratories of Integrative Neurosciences and Endocrinology, University of Bristol, Bristol, UK

HARUKAZU NAKAMURA • Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

ANDRÁS NAGY • Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada

CÉSAR NÚNEZ • School of Biological Sciences, University of Manchester, Manchester, UK

MAALA PARAMESWARAN • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia

GREGORY PELKA • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia

MELINDA PIRITY • Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
Marysia Placzek • Centre for Developmental Genetics, University of Sheffield, Sheffield, UK
Ann Poznanski • Department of Biology, University of Virginia, Charlottesville, Virginia, USA
Clare Pritchard • MRC Mammalian Genetics Unit, Harwell, UK
Gabriel A. Quinlan • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Tania Radziewic • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Maria Rex • Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
Carin Sahlberg • Institute of Biotechnology, University of Helsinki, Helsinki, Finland
Ebrahim Sakhinia • School of Biological Sciences, University of Manchester, Manchester, UK
Thomas F. Schilling • Department of Developmental and Cell Biology, University of California, Irvine, California, USA
Paul J. Scotting • Institute of Genetics, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
Paul T. Sharpe • Department of Craniofacial Development, King’s College London, London, UK
William C. Skarnes • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
James C. Smith • CRC/Wellcome Trust Gurdon Institute, University of Cambridge, Cambridge, UK
Derek Stemple • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
Claudio D. Stern • Department of Anatomy and Developmental Biology, University College, London, UK
Andrea Streit • Department of Craniofacial Development, King’s College London, London, UK
Karin Sturm • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Patrick P. L. Tam • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Marie-Aimée Teillet • Institut d’Embryologie Cellulaire et Moléculaire, College de France, Nogent-sur-Marne, France
Irma Thesleff • Institute of Biotechnology, University of Helsinki, Helsinki, Finland
Cheryl Tickle • Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
Paul A. Trainor • Stowers Institute, Kansas City, Kansas, USA
Antonio Tugores • Gene Expression Laboratory, Stem Cell Research Center, and Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
Peter Underhill • MRC Mammalian Genetics Unit, Harwell, UK
Hirosi Wada • Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
Catherine M. Watson • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Damian L. Weaver • School of Biological Sciences, University of Manchester, Manchester, UK
Richard J. T. Wingate • MRC Centre for Developmental Neurobiology, King’s College London, London, UK
Joachim Wittbrodt • Developmental Biology Program, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
Nicole Wong • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Qiling Xu • National Institute for Medical Research, Mill Hill, London, UK
Sheila X. Zhou • Embryology Unit, Children’s Medical Research Institute and University of Sydney, Sydney, Australia
Catherine Ziller • Institut d’Embryologie Cellulaire et Moleculaire, College de France, Nogent-sur-Marne, France