Peptide Microarrays

Methods and Protocols

Edited by

Marina Cretich

ICRM-C.N.R., Milano, Italy

Marcella Chiari

ICRM-C.N.R., Milano, Italy

Humana Press
Preface

The ability to directly interrogate protein interactions in a high-throughput format provides an unprecedented opportunity to dissect the complex molecular architectures of living systems. Traditional molecular biology techniques provide valuable information on the expression, structure, and function of proteins; nonetheless, these methods are unable to provide the massively parallel analysis capacity which is essential to map an entire proteome or to accomplish the present-day drug discovery programs. Parallel sensing using arrayed systems has proved to be successful in genomic research where DNA microarrays are widely used for large-scale analysis of gene expression. However, the protein equivalent of the DNA microarrays poses a more difficult challenge, especially in the identification of suitable high-affinity capture ligands, which retain their specificity and functionality following immobilization on the arrayed sensor substrate. Synthetic peptides have some very interesting features as capture ligands in microarray experiments: they are easy to synthesize and manipulate, highly stable, and inexpensive. More importantly, since peptide ligands can be modeled to act as a binding site for almost any target structure of the proteome, they can mimic biological activities of proteins and provide a straightforward analytical approach in a variety of applications. Beyond their initial utility in protease profiling, researchers are adopting peptide microarrays for the comparative screening of many different classes of enzymes and proteins for the study of complex biological matrices and even living cells. The peptides on the arrays may serve to sense protein activity (as substrates) or act as small molecule ligands (for potential therapeutic leads) in profiling, detection or diagnostic applications. Due to these developments, along with the diminishing costs of library synthesis and the growing of commercial support, peptide microarrays will no longer remain just a research tool but also a versatile and powerful platform to be harnessed for wider drug discovery and point-of-care applications.

Peptide Microarrays: Methods and Protocols is a view on the peptide array technology, on its applications and technical issues. The book is divided into four sections:

i) The **Introduction** comprises four review chapters aimed at giving to the readers the broadest view of how peptides can characterize proteins and clarify, at the amino acid level, the molecular recognition events in which they are involved.

ii) **Section II** is dedicated to several practical applications of peptide arrays: to their production and use for enzyme and binding motifs characterization, epitope mapping and diagnostics.

iii) **Section III** is devoted to new technological advancements that can improve the state-of-the-art of peptide microarray methodologies and even pose the way toward new concepts in parallel analysis.

iv) **Section IV** is dedicated to software and Web tools for the design of peptide arrays and for the analysis of output data.
We hope that readers will take advantage of the unique insights and the novel solutions in peptide arrays technology offered by each chapter of this book.

We thank all the authors of this Volume for their valuable contributions and for their willingness in sharing their experience and knowledge. We thank Prof. John Walker for continuous support and editorial help and the staff of Humana Press for their professionalism.

Finally, we wish to express gratitude to the members of our group and to all the colleagues and friends who, despite the difficulties, stay beside us.

Marina Cretich
Marcella Chiari
Contents

Preface .. v
Contributors ... ix

SECTION I: INTRODUCTION

1 Exploring and Profiling Protein Function with Peptide Arrays 3
 Victor E. Tapia, Bernhard Ay, and Rudolf Volkmer

2 Peptide Arrays for Enzyme Profiling .. 19
 Alexandra Thiele, Johannes Zerweck, and Mike Schutkowski

3 Using Peptide Array to Identify Binding Motifs and Interaction Networks
 for Modular Domains .. 67
 Shawn S.-C. Li and Chenggang Wu

4 Molecular Simulations of Peptides: A Useful Tool for the Development
 of New Drugs and for the Study of Molecular Recognition 77
 Massimiliano Meli and Giorgio Colombo

SECTION II: APPLICATIONS

5 Synthesis of Peptide Arrays Using SPOT-Technology
 and the CelluSpots-Method .. 157
 Dirk F.H. Winkler, Kai Hilpert, Ole Brandt, and Robert E.W. Hancock

6 Rapid Identification of Linear Protein Domain Binding Motifs Using
 Peptide SPOT Arrays ... 175
 Douglas J. Briant, James M. Murphy, Genie C. Leung, and Frank Sicheri

7 Characterization of Kinase Target Phosphorylation Consensus Motifs Using
 Peptide SPOT Arrays ... 187
 Genie C. Leung, James M. Murphy, Doug Briant, and Frank Sicheri

8 CelluSpots™: A Reproducible Means of Making Peptide Arrays for the
 Determination of SH2 Domain Binding Specificity 197
 Chenggang Wu and Shawn S.-C. Li

9 High-Density Peptide Microarrays for Reliable Identification of Phosphorylation
 Sites and Upstream Kinases ... 203
 Alexandra Thiele, Johannes Zerweck, Matthias Weiwide,
 Gunter Fischer, and Mike Schutkowski

10 Epitope Mapping of Human Chromogranin A by Peptide Microarrays 221
 Marina Cretich, Renato Longhi, Angelo Corti, Francesco Damin,
 Gabriele Di Carlo, Valentina Sedini, and Marcella Chiari

11 Antimicrobial Peptide Arrays for Detection of Inactivated Biothreat Agents 233
 Chris R. Taitt, Stella H. North, and Nadezda V. Kulagina

12 Mapping Functional Prion–Prion Protein Interaction Sites Using Prion Protein
 Based Peptide-Arrays ... 257
 Alan Rigter, Jan Priem, Drophatie Timmers-Parohi,
 Jan PM Langeveld, and Alex Bossers
A Designed Peptide Chip: Protein Fingerprinting Technology with a Dry Peptide Array and Statistical Data Mining

Kenji Usui, Kin-ya Tomizaki, and Hisakazu Mihara

SECTION III: TECHNOLOGICAL ADVANCEMENTS

14 Peptide Microarrays on Bisphenol A Polycarbonate

Vianney Souplet, Clément Roux, and Oleg Melnyk

15 Self-Assembly of PNA-Encoded Peptides into Microarrays

François Debaene and Nicolas Winssinger

16 A Novel Combinatorial Approach to High-Density Peptide Arrays

Mario Beyer, Ines Block, Kai König, Alexander Nesterov, Simon Fernandez, Thomas Felgenhauer, Christopher Schirwitz, Klaus Leibe, Ralf F. Bischoff, Frank Breitling, and Volker Stadler

17 Polypyrrole–Peptide Microarray for Biomolecular Interaction Analysis by SPR Imaging

Marie-Bernadette Villiers, Sandra Cortès, Carine Brakha, Patrice Marche, André Roget, and Thierry Livache

18 The Peptide Microarray-Based Assay for Kinase Functionality and Inhibition Study

Zhenxin Wang

19 An Advanced Application of Protein Microarrays: Cell-Based Assays for Functional Genomics

Roberta Carbone

20 Profiling the Autoantibody Repertoire by Screening Phage-Displayed Human cDNA Libraries

Roberto Di Niro, Sara D’Angelo, Paola Secco, Roberto Marzari, Claudio Santoro, and Daniele Sblattero

SECTION IV: SOFTWARE/WEB TOOLS AND DATA ANALYSIS

21 Visualisation and Pre-processing of Peptide Microarray Data

Marie Reilly and Davide Valentini

22 Web-Based Design of Peptide Microarrays Using μPepArray Pro

Tongbin Li, Zhixiang Zuo, Qi Zhu, Ailing Hong, Xiaochuan Zhou, and Xiaolian Gao

23 Qualitative and Quantitative Analysis of Peptide Microarray Binding Experiments Using SVM-PEPARRAY

Gang Chen, Zhixiang Zuo, Qi Zhu, Ailing Hong, Xiaochuan Zhou, Xiaolian Gao, and Tongbin Li

24 PASE: A Web-Based Platform for Peptide/Protein Microarray Experiments

Fabien Pamelard, Gael Even, Costin Apostol, Cristian Preda, Clarisse Dhaenens, Vronique Fafeur, Rémi Desmet, and Oleg Melnyk

Index
Contributors

Costin Apostol · CIB, Génopole de Lille, Universités de Lille 1 et 2, LIFL, Bâtiment M3, Cité scientifique, Villeneuve d’Ascq cedex, France

Bernard Ay · Institut für Medizinische Immunologie, Charité – Universitätsmedizin Berlin, Berlin, Germany

Mario Beyer · Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany

Ralf F. Bischoff · Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany

Ines Block · Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany

Alex Bossers · Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands

Carine Brakha · Inserm, U823, IAPC, Grenoble, France; University J. Fourier, Grenoble, France

Ole Brandt · Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada

Frank Breitling · Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany

Douglas J. Briant · Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada

Roberta Carbone · Tethis s.r.l., Milano, Italy

Gang Chen · Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA

Marcella Chiari · Istituto di Chimica del Riconoscimento Molecolare (ICRM) – C.N.R., Milano, Italy

Giorgio Colombo · Istituto di Chimica del Riconoscimento Molecolare (ICRM) – C.N.R., Milano, Italy

Sandra Cortés · Inserm, U823, IAPC, Grenoble, France; University J. Fourier, Grenoble, France

Angelo Corti · Immunobiotechnology Unit, Department of Biological and Technological Research, San Raffaele H Scientific Institute, Milano, Italy

Marina Cretich · Istituto di Chimica del Riconoscimento Molecolare (ICRM) – C.N.R., Milano, Italy

Sara D’Angelo · Department of Medical Sciences and Interdisciplinary Research Center for Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy

Francesco Damin · Istituto di Chimica del Riconoscimento Molecolare (ICRM) – C.N.R., Milano, Italy

François Debaene · Institut de Science et Ingénierie Supramoléculaires Université Louis Pasteur – CNRS UMR 70068, Strasbourg, France
Contributors

Rémi Desmet • UMR8161, CNRS, Universités de Lille 1 et 2, Institut Pasteur de Lille, IFR 142 Institut de Biologie de Lille, Lille, France
Clarisse Dhaenens • CIB, Génopole de Lille, Universités de Lille 1 et 2, LIFL, Bâtiment M3, Cité scientifique, Villeneuve d’Ascq cedex, France
Gabriele Di Carlo • Istituto di Chimica del Riconoscimento Molecolare (ICRM) – C.N.R., Milano, Italy
Roberto Di Niro • Department of Life Sciences, University of Trieste, Trieste, Italy
Gael Even • CIB, Génopole de Lille, Universités de Lille 1 et 2, LIFL, Bâtiment M3, Cité scientifique, Villeneuve d’Ascq cedex, France
Vronique Fafeur • UMR 8161, CNRS, Universités de Lille 1 et 2, Institut Pasteur de Lille, IFR 142 Institut de Biologie de Lille, Lille, France
Thomas Felgenhauer • Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany
Simon Fernandez • Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany
Gunter Fischer • Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
Xiaolian Gao • Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
Robert E.W. Hancock • Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
Kai Hilpert • Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
Ailing Hong • Atactic Technologies, Houston, TX, USA
Kai König • Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany
Nadezhda V. Kulagina • US Naval Research Laboratory, Washington, DC, USA
Jan P.M. Langeveld • Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
Klaus Leibe • Department of Chip-Based Peptide Libraries, German Cancer Research Center, Heidelberg, Germany
Genie C. Leung • Therapeutics Group, The Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada
Shawn S.-C. Li • Department of Biochemistry and the Siebens–Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
Tongbin Li • Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
Thierry Livache • University J. Fourier, Grenoble, France; UMR SPrAM 5819 (CEA, CNRS), INAC, Grenoble, France
Renato Longhi • Istituto di Chimica del Riconoscimento Molecolare (ICRM) – C.N.R., Milano, Italy
Patrice Marché • Inserm, U823, IAPC, Grenoble, France; University J. Fourier, Grenoble, France
Roberto Marzari • Department of Life Sciences, University of Trieste, Trieste, Italy
Drophiatie Timmers-Parohi • Pepscan Systems BV, Lelystad, The Netherlands
Kin-ya Tomizaki • Innovative Materials and Processing Research Center and Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520–2194, Japan
Kenji Usui • Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori, Yokohama, Japan
Davide Valentini • Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
Marie-Beradette Villiers • Inserm, U823, IAPC, Grenoble, France; University J. Fourier, Grenoble, France
Rudolph Volkmer • Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
Zhenxin Wang • State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
Matthias WeiWad • Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
Dirk F.H. Winkler • Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
Nicolas Winssinger • Institut de Science et Ingénierie Supramoléculaires Université Louis Pasteur – CNRS UMR 70068, Strasbourg, France
Chenggang Wu • Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
Johannes Zerweck • JPT Peptide Technologies GmbH, Berlin, Germany
Xiaochuan Zhou • LC Sciences, Houston, TX, USA
Qi Zhu • Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
Zhixiang Zuo • Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA