Epithelial Transport Physiology
Preface

Biological cell membranes regulate the transfer of matter and information between the intracellular and extracellular compartments as basic survival and maintenance functions for an organism. This volume contains a series of reviews that are concerned with how epithelial plasma membranes regulate the transport of solutes between the intracellular and extracellular compartments of a cell. This book is also an attempt to analyze the molecular basis for the movement of various solutes across an epithelial cell membrane.

This volume is devoted to a diversity of epithelial transport mechanisms in representative cell membranes of a variety of living things. The first section of the book (Chapters 1–6) focuses on mechanisms of solute transport in epithelia of invertebrates. The last section which comprises ten chapters (Chapters 7–16) deals with solute transporters in epithelial cell membranes of vertebrates. It is hoped that with this particular ordering the reader can glean a telescopic view of the evolutionary history of the various epithelial solute transporters.

Although this book is designed to bring together a large body of literature dealing with different types of epithelial transport processes in cellular membranes and is aimed at the researcher, I hope this volume will be a valuable contribution to senior-level studies in membrane biology as well as clinical research. As editor, I wish to thank my friends and colleagues who have kindly contributed chapters to this volume. I also wish to thank Humana Press, who assumed the task of producing this volume, and my secretary, Ms. Robyn Edwards, and our department’s computer specialist, Kevin Fortin, for their skillful help in various phases of manuscript preparation, and also my wife, Alison, and my sons, Rob and Jeff, whose witty humor and kindness helped so much in lightening the editorial burdens.

Possibly of most importance, I would like to thank my late mentors, Professor William McD. Armstrong of Indiana University, Professor Suk Ki Hong of the State University of New York at Buffalo, and my dearly beloved father, George S. Gerencser. Any virtues that this volume may possess must largely arise from the stimulus, encouragement, and inspiration that I received from these
most distinguished, accomplished men. I would also like to personally thank my father for the love, trust, pride, and confidence that he had for me; otherwise my accomplishments, including this book, would be significantly less.

Gainesville, Florida
January 2008

George A. Gerencser
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride ATPase Pumps in Epithelia</td>
<td>1</td>
</tr>
<tr>
<td>George A. Gerencser</td>
<td></td>
</tr>
<tr>
<td>Divalent Anion Transport in Crustacean and Molluscan Gastrointestinal Epithelia</td>
<td>29</td>
</tr>
<tr>
<td>George A. Gerencser and Gregory A. Ahearn</td>
<td></td>
</tr>
<tr>
<td>Heavy Metal Transport and Detoxification by Crustacean Epithelial Lysosomes</td>
<td>49</td>
</tr>
<tr>
<td>Gregory A. Ahearn, Kenneth M. Sterling, Prabir K. Mandal, and Barbara Roggenbeck</td>
<td></td>
</tr>
<tr>
<td>Epithelial Calcium Transport in Crustaceans: Adaptation to Intrinsic and Extrinsic Stressors</td>
<td>73</td>
</tr>
<tr>
<td>Michele G. Wheatly, Yongping Gao, and Christopher M. Gillen</td>
<td></td>
</tr>
<tr>
<td>The Cellular Basis of Extreme Alkali Secretion in Insects: A Tale of Two Tissues</td>
<td>91</td>
</tr>
<tr>
<td>David F. Moffett and Horst Onken</td>
<td></td>
</tr>
<tr>
<td>H⁺, Na⁺, K⁺, and Amino Acid Transport in Caterpillar and Larval Mosquito Alimentary Canal</td>
<td>113</td>
</tr>
<tr>
<td>William R. Harvey and Bernard A. Okech</td>
<td></td>
</tr>
<tr>
<td>CFTR-Dependent Anion Transport in Airway Epithelia</td>
<td>149</td>
</tr>
<tr>
<td>J.W. Hanrahan</td>
<td></td>
</tr>
<tr>
<td>Sulfate and Phosphate Transporters in Mammalian Renal and Gastrointestinal Systems</td>
<td>165</td>
</tr>
<tr>
<td>Daniel Markovich</td>
<td></td>
</tr>
<tr>
<td>Role of H⁺-K⁺ ATPase, Na⁺-K⁺-2Cl⁻ and Na⁺-Cl⁻-HCO₃⁻ Transporters in Vertebrate Small Intestine</td>
<td>195</td>
</tr>
<tr>
<td>John F. White</td>
<td></td>
</tr>
<tr>
<td>The H⁺- and H⁺, K⁺-ATPases of the Collecting Duct</td>
<td>225</td>
</tr>
<tr>
<td>Brian D. Cain, Michelle L. Gumz, Deborah L. Zies, and Amanda K. Welch</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Acid/Base Regulation in Renal Epithelia by H,K-ATPases</td>
<td>245</td>
</tr>
<tr>
<td>I. Jeanette Lynch and Charles S. Wingo</td>
<td></td>
</tr>
<tr>
<td>Sodium Transport Mechanisms in the Mammalian Nephron</td>
<td>271</td>
</tr>
<tr>
<td>Michelle L. Gumz, Lisa R. Stow, and Shen-Ling Xia</td>
<td></td>
</tr>
<tr>
<td>Renal Acid–Base Regulation Via Ammonia Transport in Mammals</td>
<td>299</td>
</tr>
<tr>
<td>I. David Weiner</td>
<td></td>
</tr>
<tr>
<td>Hexose Transport Across Mammalian Epithelia</td>
<td>323</td>
</tr>
<tr>
<td>Chris I. Cheeseman</td>
<td></td>
</tr>
<tr>
<td>Amino Acid Transport by Epithelial Membranes</td>
<td>353</td>
</tr>
<tr>
<td>Bruce R. Stevens</td>
<td></td>
</tr>
<tr>
<td>Molecular Ontology of Amino Acid Transport</td>
<td>379</td>
</tr>
<tr>
<td>Dmitri Y. Boudko</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>473</td>
</tr>
</tbody>
</table>
Contributors

Gregory A. Ahearn, Ph.D. Department of Biology, University of North Florida, Jacksonville, FL, USA, gahearn@unf.edu

Dimitri Y. Boudko, Ph.D. Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA, dmitri.boudko@rosalindfranklin.edu

Brian D. Cain, Ph.D. Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA, bcain@ufl.edu

Chris I. Cheeseman, Ph.D. Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, AB, Canada, chris.cheeseman@ualberta.ca

Yongping Gao, Ph.D. Department of Biological Sciences, Wright State University, Dayton, OH, USA

George A. Gerencser, Ph.D. Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610-0274, USA, ggerencs@ufl.edu

Christopher M. Gillen, Ph.D. Department of Biology, Kenyon College, Gambier, OH, USA

Michelle L. Gumz, Ph.D. Division of Nephrology, Hypertension and Transplantation, Malcolm Randall Veterans Affairs Medical Center, and University of Florida College of Medicine, Gainesville, FL, USA, michelle.gumz@medicine.ufl.edu

J. W. Hanrahan, Ph.D. Department of Physiology, McGill University, Montréal, QC, Canada, hanrahan@med.mcgill.ca

William A. Harvey, Ph.D. Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA; Department of Epidemiology and Biostatistics, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA, wharvey@whitney.ufl.edu
I. Jeannette Lynch North Florida/South Georgia Veterans Health System, University of Florida College of Medicine, Gainesville, FL, USA

Prabir K. Mandal, Ph.D. Department of Biology, University of North Florida, Jacksonville, FL, USA

Daniel Markovich, Ph.D. School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia, d.markovich@uq.edu.au

David F. Moffett, Ph.D. School of Biological Sciences, Washington State University, Pullman, WA, USA, dmoffett@wsu.edu

Bernard A. Okech, Ph.D. Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA; Department of Epidemiology and Biostatistics, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA

Horst Onken, Ph.D. Department of Biological Sciences, Wagner College, Staten Island, NY, USA, horst.onken@wagner.edu

Barbara Roggenbeck Department of Biology, University of North Florida, Jacksonville, FL, USA

Kenneth M. Sterling Department of Biology, University of North Florida, Jacksonville, FL, USA

Bruce R. Stevens, Ph.D. Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA, stevensb@ufl.edu

Lisa R. Stow Department of Physiology and Functional Genomics, Malcolm Randall Veterans Affairs Medical Center, University of Florida College of Medicine, Gainesville, FL, USA

I. David Weiner, M.D. Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA, david.weiner@medicine.ufl.edu

Amanda K. Welch Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA

Michele G. Wheatly, Ph.D. Department of Biological Sciences, College of Science and Mathematics, Wright State University, Dayton, OH, USA, michele.wheatly@wright.edu

John F. White, Ph.D. Department of Physiology, School of Medicine, Emory University, Atlanta, GA, USA, jfwhite@physio.emory.edu

Charles S. Wingo, M.D. North Florida/South Georgia Veterans Health System and University of Florida College of Medicine, Gainesville, FL, USA, charles.wingo@va.gov
Shen-Ling Xia, Ph.D. Division of Nephrology, Hypertension and Transplantation, and Department of Physiology and Functional Genomics, Malcolm Randall Veterans Affairs Medical Center, University of Florida College of Medicine, Gainesville, FL, USA

Deborah L. Zies, Ph.D. Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, USA