To Dan, Edward and William with love.
Preface

One of the major challenges currently facing the scientific community is to understand the function of the 20,000–25,000 protein-coding genes that were revealed when the human genome was fully sequenced. This book details the transgenic techniques that are currently used to modify the genome in order to extend our understanding of the in vivo function of these genes.

Since the advent of transgenic technologies, the mouse has become by far the most popular model in which to study mammalian gene function. This is due to not only its genetic similarity to humans but also its physiological and, to a certain extent, its anatomical similarities. Whilst a large proportion of this book is dedicated to the use of the mouse in transgenesis, the mouse is certainly not the only model to provide essential information regarding gene function. A number of other valuable models are used in transgenic studies including *Drosophila*, *C. elegans*, *Xenopus*, zebrafish, and rat. For each of these species, a chapter in this book is dedicated to highlighting how each is particularly suited, for example, to the study of embryonic development, physiological function of genes and to study orthologs of human disease genes. These chapters give detailed practical descriptions of animal production, construct design, and gene transfer techniques; recently developed methods will be described along with highly established classical techniques.

A number of chapters in this book are dedicated to the generation of genetically modified mice by the present classic techniques of injection of exogenous DNA into the pronuclei of fertilised eggs and by gene targeting using homologous recombination in embryonic stem cells. These chapters, as with all the others in the book, have been specifically written for this edition of *Transgenesis* and so contain up-to-date details of the practices in the field. Chapters are included describing optimal transgene and construct design, in-depth technical details for pronuclear microinjection of transgenes and associated surgical techniques, details for the optimal conditions in which to culture embryonic stem cells in order to maintain their pluripotent state, and methods for targeting these cells. A combination of chapters (Chaps. 13–15) describe how to generate chimaeras by microinjection of targeted ES cells into blastocysts or by morula aggregation, and the surgical techniques required to transfer the resulting embryos. For a number of years, the use of Cre/loxP and flp/frt recombination systems has gained in popularity; Chap. 16 describes their use and introduces other state-of-the-art site-specific recombination systems that can be used to manipulate the mouse genome. The generation and use of Cre-expressing transgenic lines are described in Chap. 17. One chapter of the book highlights the large-scale international efforts that are being made to systematically knockout every gene in the genome. The remaining chapters detail the breeding and husbandry skills required to successfully propagate a transgenic line and the increasingly essential methods for cryopreserving a mouse line and recovering lines from frozen stocks.

This book is a comprehensive practical guide to the generation of transgenic animals and is packed full of handy hints and tips from the experts who use these techniques on a
day-to-day basis. It is designed to become an invaluable source of information in any lab currently involved in transgenic techniques, as well as for researchers who are newcomers to the field. This book also provides essential background information for scientists who work with these models but have not been involved in their generation.

On a personal note, it has been a great pleasure to edit this latest edition of *Transgenesis*. Firstly, I learnt many of my skills from reading earlier editions of the book and I hope that this edition will help and inspire many others. Secondly, I have been privileged to work with the exceptionally talented researchers in the transgenesis field who have contributed to this book.

Manchester, UK
Elizabeth J. Cartwright
Contents

Preface ... vii
Contributors .. xi

PART I TRANSGENESIS IN VARIOUS MODEL SYSTEMS

1. Transgenesis in Drosophila melanogaster ... 3
 Leonie Ringrose

2. Transgenesis in Caenorhabditis elegans ... 21
 Matthias Rieckher, Nikos Kourtis, Angela Pasparaki,
 and Nektarios Tavernarakis

3. Transgenesis in Zebrafish with the Tol2 Transposon System 41
 Maximiliano L. Suster, Hiroshi Kikuta, Akihiro Urasaki,
 Kazuhide Asakawa, and Koichi Kawakami

4. Generation of Transgenic Frogs .. 65
 Jana Loeber, Fong Cheng Pan, and Tomas Pieler

5. Pronuclear DNA Injection for the Production of Transgenic Rats 73
 Jean Cozzi, Ignacio Anegon, Valérie Braun, Anne-Catherine Gross,
 Christel Merrouche, and Yacine Cherifi

PART II TRANSGENESIS IN THE MOUSE

6. Cell-Type-Specific Transgenesis in the Mouse ... 91
 James Gulick and Jeffrey Robbins

7. Transgene Design and Delivery into the Mouse Genome: Keys to Success 105
 Lydia Teboul

8. Overexpression Transgenesis in Mouse: Pronuclear Injection 111
 Wendy J.K. Gardiner and Lydia Teboul

9. Gene-Targeting Vectors .. 127
 J. Simon C. Arthur and Victoria A. McGuire

10. Gene Trap: Knockout on the Fast Lane ... 145
 Melanie Ullrich and Kai Schuh

11. Culture of Murine Embryonic Stem Cells ... 161
 Ivana Barbaric and T. Neil Dear

12. Targeting Embryonic Stem Cells ... 185
 Roland H. Friedel

13. Generation of Chimeras by Microinjection ... 199
 Anne Plück and Christian Klasen
14. Generation of Chimeras by Morula Aggregation .. 219
 Anne Plück and Christian Klasen

15. Surgical Techniques for the Generation of Mutant Mice 231
 Anne Plück and Christian Klasen

16. Site-Specific Recombinases for Manipulation of the Mouse Genome 245
 Marie-Christine Birling, Françoise Gofflot, and Xavier Warot

17. Cre Transgenic Mouse Lines ... 265
 Xin Wang

18. Large-Scale Mouse Mutagenesis ... 275
 Elizabeth J. Cartwright

19. Dedicated Mouse Production and Husbandry ... 285
 Lucie Vizor and Sara Wells

20. Biological Methods for Archiving and Maintaining Mutant Laboratory Mice. Part I: Conserving Mutant Strains ... 301
 Martin D. Fray

 Martin D. Fray

Index .. 333
Contributors

Ignacio Anegon • INSERM – Institut National de la Santé et de la Recherche Médicale, Nantes, France

J. Simon C. Arthur • MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK

Kazuhide Asakawa • Division of Molecular and Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan

Ivana Barbaric • Department of Biomedical Science, University of Sheffield, Sheffield, UK

Marie-Christine Birling • Institut Clinique de la Souris – Mouse Clinical Institute (ICS-MCI), Illkirch, France

Valérie Braun • genOway SA, Lyon, France

Elizabeth J. Cartwright • Cardiovascular Medicine, University of Manchester, Manchester, UK

Yacine Cherifi • genOway SA, Lyon, France

Jean Cozzi • genOway SA, Lyon, France

T. Neil Dear • Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, UK

Martin Fray • Frozen Embryo & Sperm Archive (FESA), Medical Research Council, Mammalian Genetics Unit, Harwell, UK

Roland H. Friedel • Institute of Developmental Genetics, Helmholtz Center Munich, Neuberberg, Germany

Wendy J.K. Gardiner • Mary Lyon Centre, Medical Research Council, Harwell, UK

Françoise Gofflot • Institut Clinique de la Souris – Mouse Clinical Institute (ICS-MCI), Illkirch, France

Anne-Catherine Gross • genOway SA, Lyon, France

James Gulick • Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH, USA

Koichi Kawakami • Division of Molecular and Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan

Hiroshi Kikuta • Division of Molecular and Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan

Christian Klasen • Transgenic Service, European Molecular Biology Laboratory, Heidelberg, Germany

Nikos Kourtis • Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece

Jana Loebel • Department of Developmental Biochemistry, University of Goettingen, Goettingen, Germany
Contributors

Victoria A. McGuire • MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK

Christel Merrouche • genOway SA, Lyon, France

Fong Cheng Pan • Vanderbilt University Program in Developmental Biology and Department of Cell and Biology, Vanderbilt University Medical Center, Nashville, TN, USA

Angela Pasparaki • Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece

Tomas Pieler • Department of Developmental Biochemistry, University of Goettingen, Goettingen, Germany

Anne Plück • Centre for Mouse Genetics, Institute for Genetics, University of Cologne, Cologne, Germany

Matthias Rieckher • Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece

Leonie Ringrose • IMBA – Institute of Molecular Biotechnology GmbH, Vienna, Austria

Jeffrey Robbins • Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH, USA

Kai Schuh • Institute of Physiology I, University of Wuerzburg, Wuerzburg, Germany

Maximiliano L. Suster • Division of Molecular and Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan

Nektarios Tavernarakis • Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece

Lydia Teboul • Mary Lyon Centre, Medical Research Council, Harwell, UK

Melanie Ullrich • Institute of Physiology I, University of Wuerzburg, Wuerzburg, Germany

Akihiro Urasaki • Division of Molecular and Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan

Lucie Vizor • Medical Research Council, Harwell, UK

Xin Wang • Faculty of Life Sciences, University of Manchester, Manchester, UK

Xavier Warot • EPFL FSV – École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Sara Wells • Medical Research Council, Harwell, UK