Introduction to Systems Biology
Introduction to Systems Biology

Edited by

Sangdun Choi, PhD

Department of Biological Sciences
Ajou University
Suwon, Korea

Introduction to Systems Biology is intended to be an introductory text for undergraduate and graduate students who are interested in comprehensive biological systems. Because genomics, transcriptomics, proteomics, interactomics, metabolomics, phenomics, localizomics, and other omics analyses provide enormous amounts of biological data, systematic instruction on how to use computational methods to explain underlying biological meanings is required to understand the complex biological mechanisms and to build strategies for their application to biological problems.

The book begins with an introductory section on systems biology. The experimental omics tools are briefly described in Part II. Parts III and IV introduce the reader to challenging computational approaches that aid in understanding biological dynamic systems. These last two parts provide ideas for theoretical and modeling optimization in systemic biological researches by presenting most algorithms as implementations, including the up-to-date, full range of bioinformatic programs, as well as illustrating available successful applications.

The authors also intend to provide a broad overview of the field using key examples and typical approaches to experimental design (both wet-lab and computational). The format of this book makes it a great resource book and provides a glimpse of the state-of-the-art technologies in systems biology. I hope that this book presents a clear and intuitive illustration of the topics on biological systemic approaches and further introduces ideal computational methods for the reader’s own research.

Sangdun Choi
Department of Biological Sciences,
Ajou University, Suwon, Korea
Preface ... v
Contributors .. xi

Part I. Introduction
1. Scientific Challenges in Systems Biology 3
 Hiroaki Kitano
2. Bringing Genomes to Life: The Use of Genome-Scale
 In Silico Models .. 14
 Ines Thiele and Bernhard Ø. Palsson
3. From Gene Expression to Metabolic Fluxes 37
 Ana Paula Oliveira, Michael C. Jewett, and Jens Nielsen

Part II. Experimental Techniques for
 Systems Biology
4. Handling and Interpreting Gene Groups 69
 Nils Blüthgen, Szymon M. Kielbasa, and Dieter Beule
5. The Dynamic Transcriptome of Mice 85
 Yuki Hasegawa and Yoshihide Hayashizaki
6. Dissecting Transcriptional Control Networks 106
 Vijayalakshmi H. Nagaraj and Anirvan M. Sengupta
7. Reconstruction and Structural Analysis of Metabolic
 and Regulatory Networks 124
 Hong-wu Ma, Marcio Rosa da Silva, Ji-Bin Sun,
 Bharani Kumar, and An-Ping Zeng
8. Cross-Species Comparison Using Expression Data 147
 Gaëlle Lelandais and Stéphane Le Crom
9. Methods for Protein–Protein Interaction Analysis 160
 Keiji Kito and Takashi Ito
10. Genome-Scale Assessment of Phenotypic Changes During Adaptive Evolution 183
 Stephen S. Fong

11. Location Proteomics ... 196
 Ting Zhao, Shann-Ching Chen, and Robert F. Murphy

Part III. Theoretical and Modeling Techniques

12. Reconstructing Transcriptional Networks Using Gene Expression Profiling and Bayesian State-Space Models ... 217
 Matthew J. Beal, Juan Li, Zoubin Ghahramani, and David L. Wild

13. Modeling Spatiotemporal Dynamics of Multicellular Signaling ... 242
 Hao Zhu and Pawan K Dhar

14. Kinetics of Dimension-Restricted Conditions 261
 Noriko Hiroi and Akira Funahashi

15. Mechanisms Generating Ultrasensitivity, Bistability, and Oscillations in Signal Transduction 282
 Nils Blüthgen, Stefan Legewie, Hanspeter Herzel, and Boris Kholodenko

16. Employing Systems Biology to Quantify Receptor Tyrosine Kinase Signaling in Time and Space 300
 Boris N. Kholodenko

17. Dynamic Instabilities Within Living Neutrophils 319
 Howard R. Petty, Roberto Romero, Lars F. Olsen, and Ursula Kummer

18. Efficiency, Robustness and Stochasticity of Gene Regulatory Networks in Systems Biology: λ Switch as a Working Example ... 336
 Xiaomei Zhu, Lan Yin, Leroy Hood, David Galas, and Ping Ao

19. Applications, Representation, and Management of Signaling Pathway Information: Introduction to the SigPath Project ... 372
 Eliza Chan and Fabien Campagne

Part IV. Methods and Software Platforms for Systems Biology

20. SBML Models and MathSBML .. 395
 Bruce E. Shapiro, Andrew Finney, Michael Hucka, Benjamin Bornstein, Akira Funahashi, Akiya Jouraku, Sarah M. Keating, Nicolas Le Novère, Joanne Matthews, and Maria J. Schilstra
21. CellDesigner: A Graphical Biological Network Editor and Workbench Interfacing Simulator 422
 Akira Funahashi, Mineo Morohashi, Yukiko Matsuoka, Akiya Jouraku, and Hiroaki Kitano

22. DBRF-MEGN Method: An Algorithm for Inferring Gene Regulatory Networks from Large-Scale Gene Expression Profiles .. 435
 Koji Kyoda and Shuichi Onami

23. Systematic Determination of Biological Network Topology: Nonintegral Connectivity Method (NICM) 449
 Kumar Selvarajoo and Masa Tsuchiya

24. Storing, Searching, and Disseminating Experimental Proteomics Data ... 472
 Norman W. Paton, Andrew R. Jones, Chris Garwood, Kevin Garwood, and Stephen Oliver

25. Representing and Analyzing Biochemical Networks Using BioMaze ... 484
 Yves Deville, Christian Lemer, and Shoshana Wodak

Appendices

I. Software, Databases, and Websites for Systems Biology ... 511

II. Glossary .. 517

Index ... 527
Contributors

Ping Ao
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA

Matthew J. Beal
Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA

Dieter Beule
MicroDiscovery GmbH, Berlin, Germany

Nils Blüthgen
Institute of Theoretical Biology, Humboldt University, Berlin, Germany

Benjamin Bornstein
Machine Learning Systems Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Fabien Campagne
Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA

Eliza Chan
Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA

Shann-Ching Chen
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Sangdun Choi
Department of Biological Sciences, Ajou University, Suwon, Korea

Marcio Rosa da Silva
Research Group Systems Biology, GBF—German Research Centre for Biotechnology, Braunschweig, Germany
Contributors

Yves Deville
Computing Science and Engineering Department, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Pawan K. Dhar
RIKEN Genomic Sciences Centre, Yokohama, Kanagawa, Japan

Andrew Finney
Physiomics PLC Oxford, Oxford, UK

Stephen S. Fong
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA

Akira Funahashi
ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan

David Galas
Institute for Systems Biology, Seattle, WA, USA

Chris Garwood
School of Computer Science, University of Manchester, Manchester, UK

Kevin Garwood
School of Computer Science, University of Manchester, Manchester, UK

Zoubin Ghahramani
Department of Engineering, University of Cambridge, Cambridge, UK

Yuki Hasegawa
Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan

Yoshihide Hayashizaki
Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan

Hanspeter Herzel
Institute of Theoretical Biology, Humboldt University, Berlin, Germany

Noriko Hiroi
ERATO Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan

Leroy Hood
Institute for Systems Biology, Seattle, WA, USA

Michael Hucka
Division of Control and Dynamical Systems and Biological Network Modeling Center, California Institute of Technology, Pasadena, CA, USA
Takashi Ito
Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan

Michael C. Jewett
Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark

Ji-Bin Sun
Research Group Systems Biology, GBF—German Research Centre for Biotechnology, Braunschweig, Germany

Andrew R. Jones
School of Computer Science, University of Manchester, Manchester, UK

Akiya Jouraku
ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan

Sarah M. Keating
Science and Technology Research Institute, University of Hertfordshire, Hatfield, UK

Boris N. Kholodenko
Department of Pathology and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, PA, USA

Szymon M. Kielbasa
Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany

Hiroaki Kitano
Sony Computer Science Laboratories, Inc., Shinagawa, Tokyo, Japan

Hiroaki Kitano
ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan

Keiji Kito
Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan

Bharani Kumar
Research Group Systems Biology, GBF—German Research Centre for Biotechnology, Braunschweig, Germany

Ursula Kummer
Bioinformatics and Computational Biochemistry, EML Research, Heidelberg, Germany

Koji Kyoda
RIKEN Genomic Sciences Center (GSC), Yokohama Institute, Tsurumiku, Yokohama, Kanagawa, Japan
Stéphane Le Crom
INSERM U368, Ecole Normale Supérieure, Paris, France

Nicolas Le Novère
Computational Neurobiology, EMBL-EBI, Wellcome-Trust Genome Campus, Hinxton, UK

Stefan Legewie
Institute of Theoretical Biology, Humboldt University, Berlin, Germany

Gaëlle Lelandais
CNRS UMR 8541, Ecole Normale Supérieure, Paris, France

Christian Lemer
Unité de Conformation des Macromolécules Biologiques, Université Libre de Bruxelles, Bruxelles, Belgium

Juan Li
Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA

Hong-wu Ma
Research Group Systems Biology, GBF—German Research Centre for Biotechnology, Braunschweig, Germany

Yukiko Matsuoka
ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Shibuya-ku, Tokyo, Japan

Joanne Matthews
Science and Technology Research Institute, University of Hertfordshire, Hatfield, UK

Mineo Morohashi
Human Metabolome Technologies, Inc., Tsuruoka, Yamagata, Japan

Robert F. Murphy
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Vijayalakshmi H. Nagaraj
BioMaPS Institute, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA

Jens Nielsen
Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark

Ana Paula Oliveira
Licenciada, Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark

Stephen Oliver
School of Life Sciences, University of Manchester, Manchester, UK
Lars F. Olsen
Department of Biochemistry and Molecular Biology, Syddansk Universitet, Syddansk, Denmark

Shuichi Onami
RIKEN Genomic Sciences Center (GSC), Yokohama Institute, Tsurumiku, Yokohama, Kanagawa, Japan

Bernhard Ø. Palsson
Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

Norman W. Paton
School of Computer Science, University of Manchester, Manchester, UK

Howard R. Petty
Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA

Roberto Romero
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, MD, and Hutzel Hospital, Detroit, MI, USA

Maria J. Schilstra
Science and Technology Research Institute, University of Hertfordshire, Hatfield, UK

Kumar Selvarajoo
Institute of Advanced Biosciences, Keio University, Tsurouka, Yamagata, Japan

Anirvan M. Sengupta
BioMaPS Institute, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA

Bruce E. Shapiro
Division of Biology and Biological Network Modeling Center, California Institute of Technology, Pasadena, CA, USA

Ines Thiele
Bioinformatics Program, University of California, San Diego, La Jolla, CA, USA

Masa Tsuchiya
Institute of Advanced Biosciences, Keio University, Tsurouka, Yamagata, Japan

David L. Wild
Keck Graduate Institute, Claremont, CA, USA

Shoshana Wodak
Department of Biochemistry and Structural Biology, Department of Medical Genetics, University of Toronto, Toronto, Ontario, Canada
Lan Yin
School of Physics, Peking University, Beijing, People’s Republic of China

An-Ping Zeng
Research Group Systems Biology, GBF—German Research Centre for Biotechnology, Braunschweig, Germany

Ting Zhao
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Xiaomei Zhu
GenMath Corp., Seattle, WA, USA

Hao Zhu
Division of Applied Mathematics, School of Mathematical Sciences, University of Nottingham, Nottingham, UK