Mitochondrial DNA

Methods and Protocols

Edited by

Jeffrey A. Stuart

Department of Biological Sciences, Brock University,
St. Catharines, ON, Canada

Humana Press
Since the publication of the first edition of *Mitochondrial DNA: Methods and Protocols* in 2002, the number of unique heritable mtDNA mutations recognized as being associated with bioenergetic dysfunction, cell death, and disease has grown apace. At the same time, our understanding of the basic biology of somatic mtDNA mutations has improved. These ongoing advancements are due largely to the continuous development and improvement of techniques and approaches for studying the biology of mitochondria and their DNA. In this second edition of *Mitochondrial DNA: Methods and Protocols*, specialists from eight countries share their expertise by providing detailed protocols for studying many aspects of mtDNA.

This volume is divided into three sections. The first contains protocols that can be used to study the transduction of information from mtDNA to functionally active respiratory complexes. Included in this section are protocols for investigating the nucleoid proteome, mtDNA packaging, replication, transcription, and respiratory complex synthesis. In this section, methods for studying polymerase gamma mutations associated with mitochondrial disorders are also provided. The second section focuses on mitochondrial reactive oxygen species (ROS) production, mtDNA damage, and its repair. Included are descriptions of unique experimental systems for manipulating mtDNA repair capacities and evaluating the outcome. The application of such methods will improve our understanding of the basic biology of mtDNA damage, repair, and mutation. Finally, in the third section, in recognition of the observation that debilitating somatic mtDNA mutations underlie some of the bioenergetic deficits observed in age-associated disease, exciting new approaches for identifying and quantifying heteroplasmic mtDNA mutations are presented.

This volume contains detailed descriptions both of established techniques that continue to be usefully applied, and of some very recently developed approaches that hold great potential to improve our understanding of mtDNA biology. As such, graduate students, postdoctoral fellows, and established investigators should all find herein useful information presented in a straightforward manner with sufficient detail to be replicated in their own laboratories. I thank all of the authors who contributed their expertise and detailed protocols to this volume for their hard work, dedication, and patience.

Jeffrey A. Stuart
Contents

Preface ... v
Contributors ... ix

Part I: MITOCHONDRIAL DNA REPLICATION, TRANSCRIPTION,
TRANSLATION, AND RESPIRATORY COMPLEX ASSEMBLY

1. Biochemical Isolation of mtDNA Nucleoids from Animal Cells 3
 Daniel F. Bogenhagen

2. Analysis of Mitochondrial DNA by Two-Dimensional Agarose
 Gel Electrophoresis ... 15
 Aurelio Reyes, Takehiro Yasukawa, Tricia J. Cluett, and Ian J. Holt

3. Comparative Purification Strategies for Drosophila and Human Mitochondrial
 DNA Replication Proteins: DNA Polymerase γ and Mitochondrial
 Single-Stranded DNA-Binding Protein 37
 Marcos T. Oliveira and Laurie S. Kaguni

4. Functional Analysis of Mutant Mitochondrial DNA Polymerase Proteins
 Involved in Human Disease .. 59
 Sherine S. L. Chan and William C. Copeland

5. Preparation of Human Mitochondrial Single-Stranded
 DNA-Binding Protein .. 73
 Matthew J. Longley, Leslie A. Smith, and William C. Copeland

6. Methods for Assessing Binding of Mitochondrial Transcription Factor A
 (TFAM) to DNA ... 87
 Atsushi Fukuoh and Dongchon Kang

7. Inducible Expression in Human Cells, Purification, and In Vitro Assays
 for the Mitochondrial DNA Helicase Twinkle 103
 Steffi Goffart and Hans Spelbrink

8. Purification Strategy for Recombinant Forms of the Human Mitochondrial
 DNA Helicase ... 121
 Tawn D. Ziebarth and Laurie S. Kaguni

9. Methods for Studying Mitochondrial Transcription Termination with
 Isolated Components .. 127
 Paola Loguercio Polosa, Stefania Dezeqlie, Marina Roberti,
 Maria Nicola Gadaleta, and Palmiro Cantatore

10. Oxidative Phosphorylation: Synthesis of Mitochondrially Encoded Proteins
 and Assembly of Individual Structural Subunits into Functional
 Holoenzyme Complexes .. 143
 Scot C. Leary and Florin Sasarman
Part II: MITOCHONDRIAL DNA DAMAGE AND REPAIR

11. Reactive Oxygen Species Production by Mitochondria
 Adrian J. Lambert and Martin D. Brand

12. Measuring mtDNA Damage Using a Supercoiling-Sensitive qPCR Approach
 Sam W. Chan and Junjian Z. Chen

13. Quantitative Analysis of Oxidized Guanine, 8-Oxoguanine, in Mitochondrial DNA by Immunofluorescence Method
 Mizuki Ohno, Sugako Oka, and Yusaku Nakabeppu

 Melissa M. Page and Jeffrey A. Stuart

15. Targeting Repair Proteins to the Mitochondria of Mammalian Cells Through Stable Transfection, Transient Transfection, Viral Transduction, and TAT-Mediated Protein Transduction
 Christopher A. Koczor, Janet W. Snyder, Inna N. Shokolenko, Allison W. Dobson, Glenn L. Wilson, and Susan P. LeDoux

16. Construction and Characterization of a Cell Line Deficient in Repair of Mitochondrial, but Not Nuclear, Oxidative DNA Damage
 Sugako Oka, Mizuki Ohno, and Yusaku Nakabeppu

Part III: MITOCHONDRIAL DNA MUTATIONS

17. Mitochondrial DNA Oxidative Damage and Mutagenesis in Saccharomyces cerevisiae
 Lyra M. Griffiths, Nicole A. Doudican, Gerald S. Shadel, and Paul W. Doetsch

18. Determination of DNA Mutation Load in Human Tissues Using Denaturing HPLC-Based Heteroduplex Analysis
 Kok Seong Lim, Robert K. Naviaux, and Richard H. Haas

19. Rapid Identification of Unknown Heteroplasmic Mitochondrial DNA Mutations with Mismatch-Specific Surveyor Nuclease
 Sylvie Bannwarth, Vincent Procaccio, and Véronique Paquis-Flucklinger

20. Collection of Isolated Cells for Studying Mitochondrial DNA Mutations Within Individual Cells
 Yevgenya Kraytsberg, Natalya Bodyak, Susan Myerow, Alexander Nicholas, Konstantin Ebralidze, and Konstantin Khrapko

 Yevgenya Kraytsberg, Natalya Bodyak, Susan Myerow, Alexander Nicholas, Konstantin Ebralidze, and Konstantin Khrapko

22. Measuring DNA Precursor Pools in Mitochondria
 Christopher K. Mathews and Linda J. Wheeler

23. Establishment of Human Cell Lines Lacking Mitochondrial DNA
 Kazunari Hasiguchi and Qiu-Mei Zhang-Akiyama

Index
Contributors

SYLVIE BANNWARTH • Department of Medical Genetics, Archet 2 Hospital, CHU Nice, France; IGMRC, FRE CNRS / UNSA 3086, Nice Sophia-Antipolis University, Nice, France
NATALYA BODYAK • Cequent Pharmaceuticals Inc., Cambridge, MA, USA
DANIEL F. BOGENHAGEN • Department of Pharmacological Sciences, University at Stony Brook, Stony Brook, NY, USA
MARTIN D. BRAND • Buck Institute of Aging, Novato, CA, USA
PALMIRO CANTATORE • Dipartimento di Biochimica e Biologia Molecolare “Ernesto Quagliariello”, Università degli Studi di Bari, Bari, Italy; Istituto di Biomembrane e Bioenergetica, CNR, Bari, Italy
SAM W. CHAN • Department of Surgery, Division of Urology, McGill University Health Centre and Research Institute, Montreal, QC, Canada
SHERINE S. L. CHAN • Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
JUNJIAN Z. CHEN • Department of Surgery, Division of Urology, McGill University Health Centre and Research Institute, Montreal, QC, Canada
WILLIAM C. COPELAND • Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
STEFANIA DECEGLIE • Dipartimento di Biochimica e Biologia Molecolare “Ernesto Quagliariello”, Università degli Studi di Bari, Bari, Italy
ALLISON W. DOBSON • Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL, USA
PAUL W. DOETSCH • Emory University School of Medicine, Atlanta, GA, USA
NICOLE A. DOUDICAN • New York University School of Medicine, New York, NY, USA
KONSTANTIN EBRALIDZE • Engelhard Institute of Molecular Biology, RAS, Moscow, Russia
ATSUSHI FUKUOH • Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
MARIA NICOLA GADALETA • Dipartimento di Biochimica e Biologia Molecolare “Ernesto Quagliariello”, Università degli Studi di Bari, Bari, Italy
STEFFI GOFFART • Institute of Medical Technology, University of Tampere, Tampere, Finland
LYRA M. GRIFFITHS • Emory University School of Medicine, Atlanta, GA, USA
TRICIA J. CLUETT • MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, UK
RICHARD H. HAAS • Department of Neurosciences and Pediatrics, University of California San Diego, La Jolla, CA, USA
Contributors

Kazunari Hashiguchi • Laboratory of Radiation Biology, Graduate School of Science, Kyoto University, Japan
Ian J. Holt • MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, UK
Laurie S. Kaguni • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
Dongchon Kang • Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
Christopher A. Koczor • Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL, USA
Konstantin Khrapko • Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
Yevgenya Kraytsberg • Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
Adrian J. Lambert • MRC Mitochondrial Biology Unit, Cambridge, UK
Scot C. Leary • Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada
Susan P. Ledoux • Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL, USA
Kok Seong Lim • Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
Matthew J. Longley • Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
Christopher K. Mathews • Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
Susan H. Myerow • Decision Biomarkers, Waltham, MA, USA
Yusaku Nakabeppu • Division of Neurofunctional Genomics, Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
Robert K. Naviaux • Department of Pediatrics and Medicine, University of California San Diego, La Jolla, CA, USA
Alexander Nicholas • Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
Mizuki Ohno • Division of Neurofunctional Genomics, Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
Sugako Oka • Division of Neurofunctional Genomics, Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
Marcos T. Oliveira • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
Melissa M. Page • Department of Biological Sciences, Brock University, St. Catharine’s, ON, Canada
Véronique Paquis-Flucklinger • Department of Medical Genetics, Archet 2 Hospital, CHU Nice, France; IGMRC, FRE CNRS / UNSA 3086, Nice Sophia-Antipolis University, Nice, France
Contributors

PAOLA LOGUERCIO POLOSA • Dipartimento di Biochimica e Biologia Molecolare “Ernesto Quagliariello”, Università degli Studi di Bari, Bari, Italy

VINCENT PROCACCIO • Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA, USA

AURELIO REYES • MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, UK

MARINA ROBERTI • Dipartimento di Biochimica e Biologia Molecolare “Ernesto Quagliariello”, Università degli Studi di Bari, Bari, Italy

FLORIN SASARMAN • Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada

GERALD S. SHADEL • Yale University School of Medicine, New Haven, CT, USA

INNA N. SHOKOLENKO • Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL, USA

LESLIE A. SMITH • Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA

JANET W. SNYDER • Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL, USA

HANS SPELBRINK • Institute of Medical Technology, University of Tampere, Tampere, Finland

JEFFREY A. STUART • Department of Biological Sciences, Brock University, St. Catharine’s, ON, Canada

LINDA J. WHEELER • Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA

GLENN L. WILSON • Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL, USA

TAKEHIRO YASUKAWA • MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, UK

QIU-MEI ZHANG-AKIYAMA • Laboratory of Radiation Biology, Graduate School of Science, Kyoto University, Japan

TAWN D. ZIEBARTH • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA