34. Cell Neurobiology Techniques, edited by Alan A. Boulton, Glen B. Baker, and Alan N. Bateson, 1999
33. Molecular Neurobiology Techniques, edited by Alan A. Boulton, Glen B. Baker, and Alan N. Bateson, 1999
32. In Vivo Neuromethods, edited by Alan A. Boulton, Glen B. Baker, and Alan N. Bateson, 1998
28. Transgenic Xenopus: Microinjection Methods and Developmental Neurobiology, by Shlomo Seidman and Hermona Soreq, 1997
23. Practical Cell Culture Techniques, edited by Alan A. Boulton, Glen B. Baker, and Wolfgang Walz, 1992
17. Neuropsychology, edited by Alan A. Boulton, Glen B. Baker and Merrill Hiscock, 1990
13. Psychopharmacology, edited by Alan A. Boulton, Glen B. Baker, and Andrew J. Greenshaw, 1989
10. Analysis of Psychiatric Drugs, edited by Alan A. Boulton, Glen B. Baker, and Ronald T. Coutts, 1988
8. Imaging and Correlative Physicochemical Techniques, edited by Alan A. Boulton, Glen B. Baker, and Donald P. Boisvert, 1988
7. Lipids and Related Compounds, edited by Alan A. Boulton, Glen B. Baker, and Lloyd A. Horrocks, 1988
6. Peptides, edited by Alan A. Boulton, Glen B. Baker, and Quentin Pittman, 1987
5. Neurotransmitter Enzymes, edited by Alan A. Boulton, Glen B. Baker, and Peter H. Yu, 1986
Preface

Neher and Sakmann were the first to monitor the opening and closing of single ion channels in the membranes of cells by conductance measurements. In 1976 they used fire-polished micropipettes with a tip diameter of 3 to 5 μm to record currents from a small patch of the membrane of skeletal muscles, thereby decreasing background membrane noise. To reduce the dominant source of background noise (the leakage shunt under the pipette rim between membrane and glass), the muscle membrane had to be treated with an enzyme. Despite these early limitations, a new technique was born—the patch-clamp.

The final breakthrough came in 1981 when the same investigators, in collaboration with Hamill, Marty, and Sigworth, developed the gigaohm seal. Not only did this improve the quality of the recordings, it was now possible to gently pull the pipette with an attached patch of membrane of the cell and to study its trapped ion channels in isolation. Another offshoot of the gigaohm seal technique was the whole-cell patch-clamp technique, in which the attached patch of membrane is ruptured without breaking the seal. This technique is really a sophisticated voltage-clamp technique and it allows for the altering of cytoplasmic constituents if the investigator wishes.

This is the third edition of this best-selling neuroscience book by Humana Press. The rationale for its design was to represent any patch-clamp method that has been in more than 10 to 15 publications over the last three years. As well, newly emerging techniques, with future potential, such as uncaging experiments with lasers and high throughput techniques, have also been represented.

Thus, the reader will find the latest developments in the traditional patch techniques like whole cell and single channel as well as perforated patch, fast drug application, loose patch, and macro-patch techniques. The fields of internal pipette perfusion techniques and patch techniques combined with molecular biology represent major innovations. Three technical developments are brand new: (1) the combination of patch clamp and optical physiology has seen the introduction of two-photon lasers and uncaging experiments; (2) it is now possible to patch in animals in vivo; and (3) in phar-
macological testing, high throughput techniques are making their appearance with both automated glass pipettes and planar patch electrodes. Thus, the arrival of the planar patch electrodes has, for the first time, enabled patch clamping without glass pipettes.

It is obvious that patch clamping is a technique that is here to stay. We will probably see future developments in addition to the glass pipette. As well, the glass pipette will be used more and more as a tool to make discrete changes to the *milieu interieur* of cells.

Wolfgang Walz
Contents

Preface .. v
Contributors ... ix

1. Technology of Patch-Clamp Electrodes
 Richard A. Levis and James L. Rae ... 1

2. Whole-Cell Patch-Clamp Recordings
 Harald Sontheimer and Michelle L. Olsen .. 35

3. Single-Channel Recording
 David J.A. Wyllie .. 69

4. Combined Fluorometric and Electrophysiological Recordings
 Hartmut Schmidt and Jens Eilers .. 121

5. Combining Uncaging Techniques with Patch-Clamp Recording and Optical Physiology
 Dmitry V. Sarkisov and Samuel S.-H. Wang .. 149

6. Visually Guided Patch-Clamp Recordings in Brain Slices
 James R. Moyer, Jr. and Thomas H. Brown ... 169

7. In Vivo Patch-Clamp Technique
 Hidemasa Furue, Toshihiko Katafuchi, and Megumu Yoshimura 229

8. Perforated Patch-Clamp Techniques
 Constantine Sarantopoulos .. 253

 Manfred Heckmann and Stefan Hallermann ... 295

10. Pipette Internal Perfusion: Methods and Applications
 Srinivas M. Tipparaju and Aruni Bhatnagar .. 309

11. Loose-Patch-Clamp Method
 Héctor G. Marrero and José R. Lemos .. 325
12. Recording Currents from Channels and Transporters in Macropatches
 Guiying Cui, Matthew D. Fuller, Christopher H. Thompson, Zhi-Ren Zhang, and Nael A. McCarty ... 353

13. Structure-Function Analyses of Single Cells by Combining Patch-Clamp Techniques with Reverse Transcription–Polymerase Chain Reaction
 Gerald Seifert and Christian Steinhäuser .. 373

14. Planar Patch Clamping
 Jan C. Behrends and Niels Fertig .. 411

15. Automated Glass Pipette–Based Patch-Clamp Techniques
 Michael Fejtí, Uwe Czubayko, Alexander Hümmer, Tobias Krauter, and Albrecht Lepple-Wienhues 435

Index ... 451
Contributors

JAN C. BEHRENDTS • Department of Physiology, University of Freiburg, Freiburg, Germany
ARUNI BHATNAGAR • Department of Medicine, University of Louisville, Louisville, KY
THOMAS H. BROWN • Department of Psychology, Yale University, New Haven, CT
GLUIYING CUI • School of Biology, Georgia Institute of Technology, Atlanta, GA
UWE CZUBAYKO • Flyion GmbH, Tubingen, Germany
JENS EILERS • Carl-Ludwig-Institut fur Physiologie, Universitat Leipzig, Germany
NIELS FERTIG • Nanion Technologies GmbH, Munchen, Germany
MATTHEW D. FULLER • Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA
HIDEMASA FURUE • Department of Integrative Physiology, Kyushu University, Fukuoka, Japan
MICHAEL FEJTL • Flyion GmbH, Tubingen, Germany
STEFAN HALLEMMANN • Institut fur Klinische Neurobiologie, Bayerische Julius-Maximilians Universitat, Wurzburg, Germany
MANFRED HECKMANN • Institut fur Klinische Neurobiologie, Bayerische Julius-Maximilians Universitat, Wurzburg, Germany
ALEXANDER HÜMMER • Flyion GmbH, Tubingen, Germany
TOSHIHIKO KATAFUCHI • Department of Integrative Physiology, Kyushu University, Fukuoka, Japan
TOBIAS KRAUTER • Flyion GmbH, Tubingen, Germany
JOSE R. LEMOS • Department of Physiology, University of Massachusetts, Worcester, MA
RICHARD A. LEVIS • Department of Physiology, Rush Medical College, Chicago, IL
ALBRECHT LEPPE-WIENHUES • Flyion GmbH, Tubingen, Germany
HÉCTOR G. MARRERO • Department of Physiology, University of Massachusetts, Worcester, MA
NAEL A. MCCARTY • School of Biology, Georgia Institute of Technology, Atlanta, GA
JAMES R. MOYER, JR. • Department of Psychology, University of Wisconsin, Milwaukee, WI
Contributors

MICHELLE L. OLSEN • Department of Neurobiology, University of Alabama, Birmingham, AL

JAMES L. RAE • Department of Physiology, Mayo Clinic College of Medicine, Rochester, MN

CONSTANTINE SARANTOPOULOS • Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI

DMITRY V. SARKISOV • Department of Molecular Biology, Princeton University, Princeton, NJ

HARTMUT SCHMIDT • Carl-Ludwig-Institut fur Physiologie, Universitat Leipzig, Germany

GERALD SEIFERT • Department of Neurosurgery, University of Bonn, Bonn, Germany

CHRISTIAN STEINHAUSER • Department of Neurosurgery, University of Bonn, Bonn, Germany

HARALD SONTHEIMER • Department of Neurobiology, University of Alabama, Birmingham, AL

CHRISTOPHER H. THOMPSON • School of Biology, Georgia Institute of Technology, Atlanta, GA

SRINIVAS M. TIPPARAJU • Department of Medicine, University of Louisville, Louisville, KY

WOLFGANG WALZ • Department of Physiology, University of Saskatchewan, Saskatoon, Canada

SAMUEL S.-H. WANG • Department of Molecular Biology, Princeton University, Princeton, NJ

DAVID J.A. WYLIE • Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK

MEGUUMU YOSHIMURA • Department of Integrative Physiology, Kyushu University, Fukuoka, Japan

ZHI-REN ZHANG • School of Biology, Georgia Institute of Technology, Atlanta, GA