
The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics, edited by Bryan L. Roth, 2006

The Adrenergic Receptors: In the 21st Century, edited by Dianne M. Perez, 2005

The Melanocortin Receptors, edited by Roger D. Cone, 2000

The Ionotropic Glutamate Receptors, edited by Daniel T. Monaghan and Robert Wenthold, 1997

The Dopamine Receptors, edited by Kim A. Neve and Rachael L. Neve, 1997

The Metabotropic Glutamate Receptors, edited by P. Jeffrey Conn and Jitendra Patel, 1994

The Tachykinin Receptors, edited by Stephen H. Buck, 1994

Adenosine and Adenosine Receptors, edited by Michael Williams, 1990

The Muscarinic Receptors, edited by Joan Heller Brown, 1989

The Serotonin Receptors, edited by Elaine Sanders-Bush, 1988

The Alpha-2 Adrenergic Receptors, edited by Lee Limbird, 1988

The Opiate Receptors, edited by Gavril W. Pasternak, 1988
The GABA Receptors

Third Edition

Edited by

S. J. Enna

Departments of Molecular and Integrative Physiology and of Pharmacology, Toxicology, and Therapeutics
University of Kansas
Kansas City, KS

and

Hanns Möhler

Institute of Pharmacology
University of Zurich
Department of Chemistry and Applied Biosciences
Swiss Federal Institute of Technology (ETH)
and
Collegium Helveticum
Zurich, Switzerland
This volume is the third edition of a monograph series that was first published in 1983. The demand for this work is a testament to the impact of studies on \(\gamma \)-aminobutyric acid (GABA) receptors on the basic understanding of synaptic transmission and on defining the clinical importance of the neurotransmitter system. Chronicled in *The GABA Receptors, Third Edition*, are the advances made in understanding the molecular and pharmacological properties of \(\text{GABA}_A \) and \(\text{GABA}_B \) receptors since the topic was last reviewed in 1996. Particular emphasis is placed on describing the assembly, structure, and function of \(\text{GABA}_B \) sites, the first heterodimeric G protein-coupled receptors identified in vivo. In addition, there are reports dealing with the subunit composition, trafficking, and pharmacological selectivity of \(\text{GABA}_A \) receptors. Aside from providing insights into the fundamental properties of ligand-gated ion channels and second messenger systems, the findings detailed in this work point the way for developing novel therapeutics capable of more selectively manipulating these transmitter sites. Chapters in this volume contain descriptions of new agents, including allosteric modulators, capable of activating or inhibiting GABA receptors. Descriptions are provided of potential clinical candidates for treating disorders as diverse as insomnia and cognitive impairments. The reports contained herein also detail new evidence directly linking \(\text{GABA}_A \) and \(\text{GABA}_B \) receptor dysfunctions to a host of neuropsychiatric conditions, including epilepsy, anxiety disorders, affective illness, and pain syndromes. These data provide a biological framework for understanding the clinical utility of GABAergic drugs as treatments for neurological and psychiatric disorders, and for their use as hypnotics and anesthetics.

Numbered among the contributors to *The GABA Receptors, Third Edition*, are many who have worked in this area for decades. All of the senior authors have been actively engaged in studying GABA receptor systems and are recognized for making seminal contributions to the field. In addition to highlighting advances over the past 10 years, the authors provide opinions on the implications of these findings and suggestions on fruitful avenues for future research. As was the case for the previous two editions, the aim of this volume is to not only serve as an information source, but as a stimulus for further advances in the field. This offering should be of particular value to basic and clinical neuroscientists in general, and neuropharmacologists, psychiatrists, and neurologists in particular.

S. J. Enna, PhD
Hanns Möhler, PhD
10. The Unusual Functioning of the GABA_B-Receptor Heterodimer:
 An Old Receptor Teaching New Functional Tricks? 253
 Andrés Couve, Stephen J. Moss, and Menelas N. Pangalos

11. Characteristics of GABA_B Receptor Mutant Mice 273
 Jim Yu-Hsiang Tiao and Bernhard Bettler

12. GABA_B Receptor as a Potential Therapeutic Target 289
 Norman G. Bowery

Index ... 313
Contributors

BERNHARD BETTLER, PhD • Pharmazentrum, Institute of Physiology, University of Basel, Basel, Switzerland

NORMAN G. BOWERY, PhD • Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Birmingham, UK

NIGEL G. COOKE, PhD • Novartis Pharma AG, Basel Switzerland

ANDRÉS COUVE, PhD • Program in Physiology and Biophysics, Centro de Neurociencias Integradas, Universidad de Chile, Santiago, Chile

ANGELA N. DUKE, MA • New England Primate Research Center, Harvard Medical School, Southborough, MA; and Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA

S. J. ENNA, PhD • Department of Molecular and Integrative Physiology, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas, Kansas City, KS

DAVID H. FARB, PhD • Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA

MARK FARRANT, PhD • Department of Pharmacology, University College London, London, UK

HUA-JUN FENG, PhD • Department of Neurology, Vanderbilt University, Nashville, TN

WOLFGANG FROESTL, PhD • Department of Chemistry, AC Immune SA, Lausanne, Switzerland

MARTIN J. GALLAGHER, MD, PhD • Department of Neurology, Vanderbilt University, Nashville, TN

TERRELL T. GIBBS, PhD • Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA

MARIA C. GRAVIELLE, PhD • Department of Pharmacology, Instituto de Investigacion Farmacologicas, Buenos Aires, Argentina

JING-QIONG KANG, MD, PhD • Department of Neurology, Vanderbilt University, Nashville, TN

BERNHARD LÜSCHER, PhD • Department of Biology, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
Contributors

Robert L. Macdonald, MD, PhD • Department of Neurology, Department of Molecular Physiology, and Department of Biophysics and Pharmacology, Vanderbilt University, Nashville, TN

Stella C. Martin, PhD • Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA

Stuart J. Mickel, PhD • Novartis Pharma AG, Basel, Switzerland

Hanns Möhler, PhD • Institute of Pharmacology, University of Zurich; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH); and Collegium Helveticum, Zurich, Switzerland

Stephen J. Moss, PhD • Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA

Menelas N. Pangalos, PhD • Neuroscience Research, Wyeth Discovery Research, Princeton, NJ

Donna M. Platt, PhD • New England Primate Research Center, Harvard Medical School, Southborough, MA

James K. Rowlett, PhD • New England Primate Research Center, Harvard Medical School, Southborough, MA; and Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA

Shelley J. Russek, PhD • Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA

Werner Sieghart, PhD • Division of Biochemistry and Molecular Biology, Center for Brain Research of the Medical University Vienna, Vienna, Austria

Janine L. Steiger, PhD • CombinatoRx, Cambridge, MA

Jim Yu-Hsiang Tiao, PhD • Pharmazentrum, Institute of Physiology, University of Basel, Basel, Switzerland

Xu Yuan, MS • Department of Biology, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA