VISUAL PROSTHESIS AND OPHTHALMIC DEVICES
Retinal Degenerations: Biology, Diagnostics, and Therapeutics, edited by Joyce Tombran-Tink, PhD, and Colin J. Barnstable, DPhil, 2007
Ocular Angiogenesis: Diseases, Mechanisms, and Therapeutics, edited by Joyce Tombran-Tink, PhD, and Colin J. Barnstable, DPhil, 2006
The history of medicine has been substantially defined by a small number of monumental discoveries. Most of these breakthroughs have emerged from the biological sciences. One of the first great breakthroughs was the recognition by Koch in 1884 that pathogens could be transmitted from one living organism to another to cause disease. This profound concept led to a revolution in the approach to patient care that ultimately led to introduction of “sterile” techniques that greatly improved survivals of patients. This knowledge promoted the discovery of antibiotics 40 years later, which dramatically increased life expectancy throughout the more developed parts of the world.

Another great milestone that has influenced medical care was the use of anesthesia for surgery, which was first introduced in 1846. Collectively, these three discoveries armed physicians with the knowledge and means to substantially reduce the prevalence of infectious disease, which was and still remains the leading cause of death throughout the world, and to perform a much wider range of surgeries with greatly improved survivals. The improved life-expectancies enabled the medical community to focus on a wider range of medical problems and solutions to disease.

Today’s modern age of medicine is being defined mostly by the benefits of the discovery of the structure of DNA by Watson and Crick in 1953. This landmark discovery enabled the revolution in the diagnosis and treatment of heritable diseases through the use of molecular genetic techniques, including the development of the polymerase chain reaction, which, like the work on DNA itself, was ultimately honored by a Nobel prize. This knowledge spawned the field of proteomics research that is now providing insights into disease mechanisms and new biological therapies.

The physical sciences have also played important roles in the development of the field of Medicine. The most significant contributions have perhaps come from the field of Physics, which provided basic X-ray technology, and roughly 80 years later the giant leap forward with the introduction of computer-assisted imaging in 1972. Since that time, there has been a natural evolution toward more detailed and elaborate imaging methods, especially magnetic resonance imaging, functional magnetic resonance imaging, and positron emission tomography. Not surprisingly, that seminal discovery of computed tomography was also awarded a Nobel prize.

In the last decade, we have seen a fusion of the biological and physical sciences in the development of the field of Ophthalmology. Translational research in these fields has resulted in the design of inorganic materials that can aid, improve, or replace biological functions of the eye. High-quality stereoscopic microscopes enabled the modern age of ophthalmic surgery, which has been defined mostly by the introduction of artificial intraocular lenses. Since Sir Harold Ridley implanted the first artificial lens in 1949, vast improvements in materials and designs over the ensuing two decades have enabled Ophthalmologists to dramatically improve the quality of life for their patients by inserting flexible artificial lenses with minimally-invasive surgical methods. Patients no longer have to endure prolonged “recovery” times, and the visual outcomes are routinely very good. These and other advances, including the very early use of LASER technology, have led to an era of exploding technological ingenuity and
have earned the field of Ophthalmology the reputation of being one of the most *avant-garde* fields of medicine.

This textbook, entitled *Visual Prosthesis and Ophthalmic Devices: New Hope in Sight*, provides the most comprehensive overview of the new technologies that are defining the modern age of Ophthalmology. Two themes are presented in this volume. In the first, we explore the interface between the eye and inorganic materials that are being used either to improve the drainage of aqueous fluid in the treatment of glaucoma or to improve the quality of vision by enhancing the ability of the eye to focus images. In the second, we explore the interface between electronics and the nervous system, in which dramatic progress has been made in improving vision with microelectronic devices that bypass irreparable ocular tissue malfunction. The technologies presented in this textbook have been developed through collaborations with many types of scientists, most notably optical engineers, materials scientists, electrical engineers, microfabrication specialists and circuit designers. This collective body of work provides a perspective on a stunning array of new technologies that redefine the limits of medical mechanics and that will influence the delivery of care to patients with many types of ophthalmic problems. Some of these innovations are “platform technologies” that with some modification could likely be used to treat other types of medical problems.

Most of the technologies discussed in this book have been developed only within a couple of decades. This pace of development and implementation is a very impressive accomplishment, given the extremely challenging obstacles that are always in the path of innovative technologies that are intended for implantation into humans.

The field of Ophthalmology is immersed in a new, exciting, and seemingly endless age that holds the promise for new diagnostic and therapeutic options to treat visual disorders. The multidisciplinary scientific approach that was required to develop the devices described in this book will likely inspire others to challenge current boundaries that limit integration of microelectronics and medicine. The authors of this textbook serve as role models for a new generation of students who have become energized by this type of applied biomedical research. Today’s students will be the torchbearers in the future for biomedical innovations that restore vision to the visually-impaired and that protect vision for those patients who are under the threat of blindness.

Joyce Tombran-Tink, PhD

Colin J. Barnstable, DPhil

Joseph F. Rizzo III, MD
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Glaucoma Drainage Devices: Advances in Design and Surgical Techniques</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Cheryl L. Cullen</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The Efficacy and Safety of Glaucoma Drainage Devices</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Jenn-Chyuan Wang and Paul Chew</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Pellucid Marginal Corneal Degeneration</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Jorge L. Alió, Mohamed H. Shabayek, Alberto Artola, and Hany El Saftawy</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Artisan Toric Lens Implantation for Correction of Postkeratoplasty Astigmatism</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Rudy M. M. A. Nuijts and Nayyirih G. Tahzib</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Phakic Intraocular Lenses for the Treatment of High Myopia</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Maria I. Kalyvianaki, George D. Kymionis, and Ioannis G. Pallikaris</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>A Telescope Prosthetic Device for Patients With End-Stage AMD</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Henry L. Hudson</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>The Use of Intracorneal Ring Segments for Keratoconus</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Sérgio Kwitko</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>275</td>
</tr>
</tbody>
</table>
SUNG JUNE KIM • Nano Bioelectronics and Systems Research Center, Nano Artificial Vision Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Republic of Korea

KYO-IN KOO • Nano Bioelectronics and Systems Research Center, Nano Artificial Vision Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Republic of Korea

SÉRGIO KWITKO • Department of Ophthalmology, Paulista School of Medicine, Sao Paulo, Brazil; Fellow in Cornea and External Diseases at the Doheny Eye Institute, University of Southern California, Los Angeles, CA; Ophthalmologist of Cornea and External Disease Service, Hospital de Clínicas de Porto Alegre, Brazil

GEORGE D. KYMIONIS • Institute of Vision and Optics, University of Crete Medical School, Heraklion, Crete, Greece

WENTAI LIU • Department of Electrical Engineering, University of California, Santa Cruz, CA

JOHN W. MORLEY • School of Medical Sciences, University of New South Wales; School of Medicine, University of Western Sydney, Sydney, Australia

RUDY M. M. A. NUIJTS • Department of Ophthalmology, Academic Hospital Maastricht, Maastricht, The Netherlands

IOANNIS G. PALLIKARIS • Institute of Vision and Optics, University of Crete Medical School, Heraklion, Crete, Greece

JOSEPH F. RIZZO III • Department of Ophthalmology, Massachusetts Eye and Ear Infirmary; Director, Center of Innovative Visual Rehabilitation, Veteran’s Administration Hospital, Boston, MA

DEAN A. SCRIBNER • Department of Optical Sciences, Naval Research Laboratory, Washington, DC

JONGMO SEO • Nano Bioelectronics and Systems Research Center, Nano Artificial Vision Research Center, Department of Ophthalmology, Seoul National University School of Medicine, Republic of Korea

MOHAMED H. SHABAYEK • Vissum, Instituto Ofalmológico de Alicante and Division of Ophthalmology, Medical School, Miguel Hernández University, Alicante, Spain and Research Institute of Ophthalmology, Giza, Egypt

MOHANASANKAR SIVAPRAKASAM • Department of Electrical Engineering, University of California, Santa Cruz, CA

LAURA SNEBOLD • Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA

JÖRG SOMMERHALDER • Eye Clinic, Geneva University Hospitals, Geneva, Switzerland

NAYYIRIH G. TAHZIB • Department of Ophthalmology, Academic Hospital Maastricht, Maastricht, The Netherlands

GUOXING WANG • Department of Electrical Engineering, University of California, Santa Cruz, CA

JENN-CHYUAN WANG • Department of Ophthalmology, National University Hospital, Singapore

JAMES D. WEILAND • Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA

JANG HEE YE • Nano Bioelectronics and Systems Research Center, Nano Artificial Vision Research Center, Department of Physiology, Chungbuk National University School of Medicine, Republic of Korea
YOUNG SUK YU • Nano Bioelectronics and Systems Research Center, Nano Artificial Vision Research Center, Department of Ophthalmology, Seoul National University School of Medicine, Republic of Korea

KAREEM A. ZAGHLoul • Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA

JINGAI ZHOU • Nano Bioelectronics and Systems Research Center, Nano Artificial Vision Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Republic of Korea

MINGCUI ZHOU • Department of Electrical Engineering, University of California, Santa Cruz, CA
COMPANION CD

Color versions of illustrations listed here may be found on the Companion CD attached to the inside back cover. The image files are organized into folders by chapter number and are viewable in most Web browsers. The number following “f” at the end of the file name identifies the corresponding figure in the text. The CD is compatible with both Mac and PC operating systems.

CHAPTER 4, FIG. 1, P. 41
CHAPTER 4, FIG. 2, P. 44
CHAPTER 5, FIG. 1, P. 57
CHAPTER 5, FIG. 3, P. 63
CHAPTER 5, FIG. 4, P. 64
CHAPTER 5, FIG. 5, P. 65
CHAPTER 5, FIG. 6, P. 67
CHAPTER 6, FIG. 1, P. 73
CHAPTER 6, FIG. 2, P. 74
CHAPTER 6, FIG. 3, P. 74
CHAPTER 6, FIG. 5, P. 81
CHAPTER 6, FIG. 6, P. 82
CHAPTER 6, FIG. 7, P. 83
CHAPTER 6, FIG. 8, P. 84
CHAPTER 6, FIG. 11, P. 86
CHAPTER 6, FIG. 12, P. 87
CHAPTER 6, FIG. 13, P. 88
CHAPTER 6, FIG. 14, P. 89
CHAPTER 9, FIG. 1, P. 122
CHAPTER 10, FIG. 1, P. 139
CHAPTER 10, FIG. 2, P. 142
CHAPTER 10, FIG. 3, P. 147
CHAPTER 10, FIG. 4, P. 149
CHAPTER 10, FIG. 5, P. 150
CHAPTER 10, FIG. 7, P. 153
CHAPTER 12, FIG. 1, P. 174
CHAPTER 12, FIG. 6, P. 188
CHAPTER 14, FIG. 1, P. 212
CHAPTER 14, FIG. 2, P. 212
CHAPTER 14, FIG. 3, P. 213
CHAPTER 14, FIG. 4, P. 214
CHAPTER 14, FIG. 5, P. 215
CHAPTER 14, FIG. 7, P. 217
CHAPTER 15, FIG. 1, P. 223
CHAPTER 16, FIG. 1, P. 241
CHAPTER 16, FIG. 2, P. 244
CHAPTER 16, FIG. 3, P. 245
CHAPTER 16, FIG. 4, P. 246
CHAPTER 17, FIG. 1, P. 252
CHAPTER 18, FIG. 1, P. 261
CHAPTER 18, FIG. 2, P. 261
CHAPTER 18, FIG. 3, P. 262
CHAPTER 18, FIG. 4, P. 263
CHAPTER 18, FIG. 5, P. 263
CHAPTER 18, FIG. 6, P. 264
CHAPTER 18, FIG. 7, P. 265
CHAPTER 18, FIG. 8, P. 266
CHAPTER 18, FIG. 9, P. 266
CHAPTER 18, FIG. 10, P. 267
CHAPTER 18, FIG. 11, P. 267
CHAPTER 18, FIG. 12, P. 269
CHAPTER 18, FIG. 13, P. 269
CHAPTER 18, FIG. 14, P. 270
CHAPTER 18, FIG. 15, P. 270
CHAPTER 18, FIG. 16, P. 270