Immunological Tolerance
Preface

Recent advances in our understanding of immunological tolerance and the processes that lead to its breakdown have helped to illuminate the etiology of many of the autoimmune diseases that affect up to 1 in 20 members of the population. The prospect of reestablishing a state of self-tolerance in the face of progressive autoimmunity is no longer the distant possibility it once seemed: various strategies have proven successful in animal models of disease, raising hopes for their eventual application in the clinic. Furthermore, the demonstration that tolerance may be extended from self to foreign tissues offers tangible alternatives for the treatment of transplant rejection, which may one day avoid the need for immunosuppression with its attendant risks and long-term side effects. Such an exciting transition phase in the field of immunological tolerance requires rigorous analysis to gauge the effectiveness of novel approaches to its induction. *Immunological Tolerance: Methods and Protocols* seeks to address this need by providing a comprehensive guide to the techniques currently used for culturing and characterizing the cell types responsible for imposing self-tolerance and the experimental models employed to study their function both in vitro and in vivo.

Immunological Tolerance: Methods and Protocols has been divided into four sections, each of which is introduced by one or more overview chapters intended to place the material in context and highlight relevant questions that remain to be addressed. Part I focuses on the those cell types whose contribution to the induction of tolerance is unequivocal: while thymic epithelial cells are instrumental to central tolerance and regulatory T cells to dominant tolerance in the periphery, dendritic cells may influence the T cell repertoire in either context, whether imposing negative selection in the thymus or polarizing responding T cells in the periphery towards a regulatory phenotype. This section therefore documents methods for the generation and culture of each of these critical cell types and approaches to their subsequent characterization. Part II describes protocols for the study of tolerance in vitro either by gene expression profiling of the relevant cell types or by recreating the specialized microenvironments in which the necessary cell-cell interactions may occur. While fetal thymus organ cultures and reaggregates of thymic stromal cells have historically illuminated the mechanisms of T cell repertoire selection, the use of three-dimensional collagen matrices represents a recent development which has begun to address the inadequacy of conventional in vitro approaches to the study of immune cell dynamics.
Part III explores issues related to the study of tolerance in vivo by describing animal models of autoimmunity, inflammatory disease and transplantation while documenting recent techniques for monitoring the outcome of therapeutic intervention. Finally, Part IV outlines novel and established strategies for the induction of tolerance experimentally through mixed chimerism, the adoptive transfer of regulatory T cells or the administration of biologicals such as monoclonal antibodies or exosomes derived from tolerogenic dendritic cells. Needless to say, many of the protocols in these sections involve procedures on live animals: since the regulatory framework surrounding such experiments varies considerably between countries, it is important to ensure that local ethical committee approval and the necessary licenses have been obtained before implementing the protocols described. With this proviso in mind, may I wish all readers success in applying the insights described in this volume within their chosen field of study.

I am, of course, most grateful for the efforts and dedication of all the authors who have contributed, not only the protocols they have developed or modified for the study of tolerance, but also for their first-hand experiences of immunology, gained from many years at the bench. I am also deeply indebted to my mentors, both past and present, who have instilled in me their enthusiasm and passion for the study of tolerance: to Jonathan Austyn, who first introduced me to the fascination and foibles of dendritic cells; to David Wraith, with whom I spent several fond years in Cambridge, grappling with autoimmunity, and to Herman Waldmann, whose immeasurable contribution to the field of tolerance I can only dream of emulating.

Finally, my heart-felt thanks go to Jackie, my wife, and Richard, my son, for their unfaltering love and support throughout the preparation of this volume, even when their own immunological tolerance had undoubtedly been pushed to the limit!

Paul J. Fairchild
Contents

Preface ... v
Contributors ... xi

1 Frontiers of Immunological Tolerance
 Giorgio Raimondi, Heth R. Turnquist, and Angus W. Thomson 1

Part I Cell Types Contributing to Immunological Tolerance

2 Balancing Tolerance and Immunity: The Role of Dendritic Cell and T Cell Subsets
 Elena Shklovskaya and Barbara Fazekas de St. Groth 25

3 Differentiation of Dendritic Cell Subsets from Mouse Bone Marrow
 Ludovica Bruno .. 47

4 Genetic Modification of Dendritic Cells Through the Directed Differentiation of Embryonic Stem Cells
 Paul J. Fairchild, Kathleen F. Nolan, and Herman Waldmann 59

5 Generation of Immunocompetent T Cells from Embryonic Stem Cells
 Renée F. de Pooter and Juan Carlos Zúñiga-Pflücker 73

6 Isolation, Expansion, and Characterization of Human Natural and Adaptive Regulatory T Cells
 Silvia Gregori, Rosa Bacchetta, Laura Passerini, Megan K. Levings, and *Maria Grazia Roncarolo* 83

7 Derivation, Culture, and Characterization of Thymic Epithelial Cell Lines
 Michiyuki Kasai and Toshiaki Mizuochi ... 107

Part II The Study of Immunological Tolerance In Vitro

8 Thymus Organogenesis and Development of the Thymic Stroma
 Craig S. Nowell, Alison M. Farley, and *C. Clare Blackburn* 125

9 Generation of a Tissue-Engineered Thymic Organoid
 Fabrizio Vianello and Mark C. Poznansky .. 163

10 Studying T-Cell Repertoire Selection Using Fetal Thymus Organ Cultures
 Philip G. Ashton-Rickardt .. 171
11 Investigating Central Tolerance with Reaggregate Thymus Organ Cultures

**Graham Anderson and Eric J. Jenkinson** ... 185

12 Estimating Thymic Function Through Quantification of T-Cell Receptor Excision Circles

**Marie-Lise Dion, Rafick-Pierre Sékaly, and Rémi Cheynier** 197

13 Gene Expression Profiling of Dendritic Cells by Microarray

**Maria Foti, Paola Ricciardi-Castagnoli, and Francesca Granucci** ... 215

14 SAGE Analysis of Cell Types Involved in Tolerance Induction

**Kathleen F. Nolan, Stephen P. Cobbold, and Herman Waldmann**. 225

15 Analyzing the Physicodynamics of Immune Cells in a Three-Dimensional Collagen Matrix

**Peter Reichardt, Frank Gunzer, and Matthias Gunzer** 253

PART III THE STUDY OF IMMUNOLOGICAL TOLERANCE IN VIVO

16 Etiology of Autoimmune Disease: How T Cells Escape Self-Tolerance

**Eli Sercarz and Claudia Raja-Gabaglia** .. 271

17 Animal Models of Spontaneous Autoimmune Disease: Type 1 Diabetes in the Nonobese Diabetic Mouse

**Nadia Giarratana, Giuseppe Penna, and Luciano Adorini** 285

18 Antigen-Based Therapy and Immune Regulation in Experimental Autoimmune Encephalomyelitis

_**Mandy J. McGeachy, Richard O’Connor, Leigh A. Stephens,**
and Stephen M. Anderton** .. 313

19 Induction and Regulation of Inflammatory Bowel Disease in Immunodeficient Mice by Distinct CD4+ T-Cell Subsets

**Kevin J. Maloy** .. 327

20 In Vivo Models for the Study of Transplantation Tolerance

**Hannah Stewart, Rommel Ravanan, and Richard Smith** 337

21 Ectopic Transplantation of Tissues Under the Kidney Capsule

_**Nathan J. Robertson, Paul J. Fairchild,**
and Herman Waldmann** .. 347

22 Intravital Two-Photon Imaging of T-Cell Priming and Tolerance in the Lymph Node

**Susanna Celli and Philippe Bousso** ... 355

23 Tracing Tolerance and Immunity In Vivo by CFSE-Labeling of Administered Cells

**Elizabeth Ingulli** .. 365
PART IV METHODS FOR INDUCING AND BREAKING IMMUNOLOGICAL TOLERANCE

24 Thymic Involution: Implications for Self-Tolerance
Frances T. Hakim and Ronald E. Gress ... 377

25 Inducing Mixed Chimerism and Transplantation Tolerance Through Allogeneic Bone Marrow Transplantation with Costimulation Blockade
Ines Pree and Thomas Wekerle ... 391

26 Induction of Dominant Tolerance Using Monoclonal Antibodies
Ana Água-Doce and Luis Graça .. 405

27 Induction of Tolerance by Adoptive Transfer of Treg Cells
Kanji Nagahama, Eiji Nishimura, and Shimon Sakaguchi 431

28 Modulation of the Immune Response Using Dendritic Cell–Derived Exosomes
Nicole R. Bianco, Seon-Hee Kim, Adrian E. Morelli, and Paul D. Robbins ... 443

29 Breaking Self-Tolerance to Tumor-Associated Antigens by In Vivo Manipulation of Dendritic Cells
Ines Mende and Edgar G. Engleman ... 457

Index .. 469
Contributors

LUCA NO ADORINI • BioXell, Milan, Italy
ANA ÁGUA-DOCE • Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
GRAHAM ANDERSON • MRC Centre for Immune Regulation, Department of Anatomy, University of Birmingham, Birmingham, UK
STEPHEN M. ANDERTON • Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
PHILIP G. ASHTON-RICKARDT • Department of Pathology & Ben May Institute for Cancer Research, University of Chicago, Chicago, IL
ROSA BACCHETTA • San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
NICOLE R. BIANCO • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA
C. CLARE BLACKBURN • Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
PHILIPPE BOUSSO • Département d’Immunologie, Institut Pasteur, Paris, France
LUDOVICA BRUNO • The Institute of Cancer Research, London, UK
SUSANNA CELLI • Département d’Immunologie, Institut Pasteur, Paris, France
RÉMI CHEYNIER • Unité des Virus Lents, Institut Pasteur, Paris, France
STEPHEN P. COBBOLD • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
RENEE F. DE POTTER • Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, Canada
MARIE-LISE DION • Laboratoire d’Immunologie, Centre de Recherches du CHUM, Montréal, Canada and Department of Microbiology and Immunology, McGill University, Montréal, Canada
EDGAR G. ENGLEMAN • Department of Pathology, Stanford University School of Medicine, Palo Alto, CA
PAUL J. FAIRCCHILD • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
ALISON M. FARLEY • Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
BARBARA FAZEKAS DE ST GROTH • Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, Australia
Contributors

MARIA FOTI • Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
NADIA GIARRATANA • BioXell, Milan, Italy
LUIS GRAÇA • Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
FRANCESCA GRANUCCI • Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
SILVIA GREGORI • San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
RONALD E. GRESS • Experimental Transplantation & Immunology Branch, National Cancer Institute, Bethesda, Maryland, MD
FRANK GUNZER • The German University of Cairo – GUC, Department of Physics, New Cairo City, Egypt
MATTHIAS GUNZER • Helmholtz Centre for Infection Research, Braunschweig, Germany
FRANCES T. HAKIM • Experimental Transplantation & Immunology Branch, National Cancer Institute, Bethesda, Maryland, MD
ELIZABETH INGULLI • Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
ERIC J. JENKINSON • MRC Centre for Immune Regulation, Department of Anatomy, University of Birmingham, Birmingham, UK
MICHYUKI KASAI • Dept of Research on Blood & Biological Product, National Institute of Infectious Diseases, Tokyo, Japan
SEON-HEE KIM • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA
MEGAN K. LEVINGS • Department of Surgery, University of British Columbia, Vancouver, Canada
KEVIN J. MALOY • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
MANDY J. MCGEACHY • Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
INES MENDE • Department of Pathology, Stanford University School of Medicine, Palo Alto, CA
TOSHIAKI MIUOCHI • Department of Research on Blood & Biological Product, National Institute of Infectious Diseases, Tokyo, Japan
ADRIAN E. MORELLI • Department of Surgery & Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
KANJI NAGAHAMA • Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
Contributors

Eiji Nishimura • Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
Kathleen F. Nolan • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
Craig S. Nowell • Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
Richard O’Connor • Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
Laura Passerini • San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
Giuseppe Penna • BioXell, Milan, Italy
Mark C. Poznansky • Infectious Diseases Division & Partners AIDS Research Center, Harvard Medical School, Charlestown, MA
Ines Pree • Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
Giorgio Raimondi • University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute, Pittsburgh, PA
Claudia Raja-Gabaglia • Torrey Pines Institute for Molecular Studies, San Diego, CA
Rommel Ravanan • Academic Renal Unit, Southmead Hospital, Bristol, UK
Peter Reichardt • Helmholtz Centre for Infection Research, Braunschweig, Germany
Paola Ricciardi-Castagnoli • Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
Paul D. Robbins • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA
Nathan J. Robertson • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
Maria Grazia Roncarolo • San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and Vita Salute San Raffaele University, Milan, Italy
Shimon Sakaguchi • Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
Rafick-Pierre Sékaly • Laboratoire d’Immunologie, Centre de Recherches du CHUM, Montréal, Canada and Department of Microbiology and Immunology, McGill University, Montréal, Canada and Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Canada
Eli Sercarz • Torrey Pines Institute for Molecular Studies, San Diego, CA
Elena Shklovskaya • Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, Sydney, Australia
Contributors

Richard Smith • Academic Renal Unit, Southmead Hospital, Bristol, UK
Leigh A. Stephens • Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
Hannah Stewart • Academic Renal Unit, Southmead Hospital, Bristol, UK
Angus W. Thomson • University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute, Pittsburgh, PA
Heth Turnquist • University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute, Pittsburgh, PA
Fabrizio Vianello • Department of Hematology, University Medical School of Padova, Italy
Herman Waldmann • Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
Thomas Wekerle • Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
Juan Carlos Zúñiga-Pflücker • Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, Canada