MECHANISMS OF THE GLAUCOMAS

Mechanisms of the Glaucomas: Disease Processes and Therapeutic Modalities, edited by Joyce Tombran-Tink, PhD, Colin J. Barnstable, DPhil, and M. Bruce Shields, MD, 2008

Retinal Degenerations: Biology, Diagnostics, and Therapeutics, edited by Joyce Tombran-Tink, PhD, and Colin J. Barnstable, DPhil, 2007

Ocular Angiogenesis: Diseases, Mechanisms, and Therapeutics, edited by Joyce Tombran-Tink, PhD, and Colin J. Barnstable, DPhil, 2006
MECHANISMS OF THE GLAUCOMAS

Disease Processes and Therapeutic Modalities

Edited by

JOYCE TOMBRAN-TINK, PhD
Department of Neural and Behavioral Sciences
Pennsylvania State University College of Medicine, Hershey, PA

COLIN J. BARNSTABLE, DPhil
Department of Neural and Behavioral Sciences
Pennsylvania State University College of Medicine, Hershey, PA

M. BRUCE SHIELDS, MD
Department of Ophthalmology and Visual Science
Yale University School of Medicine, New Haven, CT

Humana Press
Dedicated to the memory of

Douglas H. Johnson, MD
April 17, 1951–July 26, 2007

Who contributed to this book and, as a true clinician-scientist, made major contributions to our understanding of glaucoma
In the year 2000, as we crossed the millennium into the twenty-first century, it was tempting to look back and consider what might have been the greatest achievements of the past century. In the field of glaucoma, there were many candidates.

For more than half of the twentieth century, glaucoma was felt by most investigators and physicians to be synonymous with elevated intraocular pressure. If the pressure was above the statistical norm of about 21 mmHg, the patient was considered to have glaucoma, and if the pressure could be lowered below that value, the glaucoma was believed to be controlled. With the seminal importance of intraocular pressure, therefore, one might argue that applanation tonometry—introduced by Goldmann (1) in the 1950s and still the gold standard by which other tonometers are compared—was the greatest contribution in glaucoma during the twentieth century.

But, in the latter half of the century, it became increasingly clear that the diagnosis and management of glaucoma was not so simple. Not all patients with elevated intraocular pressure acquired glaucomatous optic nerve damage and visual field loss, and some patients with normal pressures did develop glaucomatous damage. Today, a commonly accepted definition of glaucoma is “a group of optic neuropathies in which a level of intraocular pressure is an important causative risk factor.” Consequently, it might be argued that diagnostic instruments, which quantify glaucomatous damage, were the most important contributions in glaucoma. During the second half of the twentieth century, perimetry evolved from the manual, bowl perimeter—again a contribution of Goldmann—to the computer-driven perimeters of today, while laser and computer technologies were being applied to image analysis of the optic nerve head.

Although sophisticated diagnostic instruments are clearly important in the prevention of blindness from glaucoma, others might argue that the greater contributions were the advances in the treatment of glaucoma. When we entered the twentieth century, the only available drugs for glaucoma were pilocarpine and other cholinergic agents. By the end of the century, at least four additional classes of drugs—prostaglandins, beta blockers, adrenergic agonists, and carbonic anhydrase inhibitors—were available, and the medical management of glaucoma had changed dramatically. But medications are not effective or tolerated in all glaucoma patients, and many would undoubtedly lose their sight were it not for surgical interventions.

Arguably, one of the greatest contributions in many fields of surgery was the introduction and application of laser technology in the second half of the twentieth century. Ophthalmology was among the first disciplines to develop this technology, initially in the treatment of retinal disorders. In glaucoma, the replacement of incisional iridectomy by laser iridotomy has had a profound effect on our management of angle-closure glaucoma, and cyclophotocoagulation has a role in some patients with advanced, intractable glaucoma. For chronic forms of open-angle glaucoma, laser trabeculoplasty
has become an important part of our treatment plan, although the magnitude and
duration of intraocular pressure reduction is limited, and a high percentage of patients
eventually require the more definitive filtering or drainage implant surgery.

Filtering surgery is truly a product of the twentieth century, having been introduced
around 1906. The technique evolved throughout the century, with the transition from
full-thickness fistulas to the guarded trabeculectomy, the application of microsurgical
techniques, and the adjunctive use of antifibrotic agents. However, the operation is
still limited by a significant rate of failures and complications, which prompted the
development during the second half of the century of drainage implant devices as an
alternative to glaucoma filtering surgery. While both of these commonly used surgical
techniques have serious shortcomings—and the quest goes on for better glaucoma
operations—they have undoubtedly saved the sight of countless thousands of patients
with glaucoma.

So, what was the greatest contribution to glaucoma in the twentieth century? Was
it the ability to accurately measure the intraocular pressure or to document the extent
of the visual field loss or to analyze the status of the optic nerve head? Or, was it the
dramatic advances in glaucoma pharmacology or the application of laser technology or
the incisional surgical procedures, when the former treatments were ineffective? While
all of these diagnostic and therapeutic advances have undoubtedly been critical in the
prevention of blindness from glaucoma, a careful analysis of the bigger picture leads
to the conclusion that the greatest contribution to glaucoma in the twentieth century
was none of the above.

All of these advances in glaucoma represent technologies, which will one day be
replaced by newer and better technologies. What will not be replaced, and what was
undoubtedly the most important contribution to glaucoma in the twentieth century, is
the knowledge that was gained through scientific investigation, on which all future
understanding of the mechanisms of glaucoma and of its management will be based.

At the beginning of the twentieth century, our understanding of the ocular mecha-
nisms related to glaucoma was extremely limited. We knew almost nothing about
aqueous humor dynamics; indeed, we did not even know whether aqueous humor
was dynamic. We did not know the difference between open-angle and closed-angle
glaucoma. We did not know whether elevated intraocular pressure in the various forms
of glaucoma was because of reduced outflow or increased inflow. And we knew
virtually nothing about the mechanism of glaucomatous optic neuropathy.

During the first half of the twentieth century, there was controversy as to whether
aqueous humor was stagnant with general metabolic exchange throughout the ocular
tissues or whether there was continuous gross circulation within the anterior ocular
segment. It was not until 1941, when Ascher (2) described aqueous veins draining
aqueous from the anterior chamber into the venous system, that the theory of continuous
circulation was confirmed. Many investigators have subsequently contributed to our
current understanding of the anatomy and physiology of aqueous humor production by
the ciliary body, the circulation and metabolic activity of aqueous in the anterior ocular
segment, and its outflow primarily through the trabecular and uveoscleral pathways.

The mechanisms of the various forms of glaucoma were unknown at the outset of
the twentieth century. We did not even know the difference between open-angle and
closed-angle mechanisms of glaucoma, and it was the gonioscopic studies of Barkan (3) in 1938 that clarified this fundamental classification of the glaucomas and provided a rational basis for their treatment. In 1950, using his concept of tonography to noninvasively estimate the facility of aqueous outflow, Grant (4) showed that in virtually all forms of glaucoma, the mechanism of elevated intraocular pressure is increased resistance to outflow. Many investigators have contributed to our understanding of the specific mechanisms that lead to the increased outflow resistance in the various glaucomas, again providing a more rational approach to management.

Late in the twentieth century, two nascent areas of research were beginning to provide glimpses of what the twenty-first century held in store for the future of glaucoma: the mechanisms of glaucomatous optic neuropathy and the molecular basis of the glaucomas. Several investigators began to disclose pieces of the complex pathways that lead to apoptosis of the retinal ganglion cells in glaucoma, and this information was being applied to the evaluation of pressure-independent neuroprotective agents. Other scientists were reporting preliminary findings in gene-linkage studies for specific forms of glaucoma. These two areas of glaucoma research will likely be the most important as we move farther into the twenty-first century and promise major changes in our understanding and management of glaucoma.

Whatever the future holds for glaucoma research and management, it is clear that the advances will be based on the knowledge that has been gained from the work of basic and clinician scientists over the past decades. The purpose of this book is to review that knowledge. The intent of the book is not primarily to describe the clinical appearances of the glaucomas nor how to manage them. Rather, it is to provide basic scientists, who are working in the field of glaucoma, with a current understanding of the clinical aspects of glaucoma and to provide clinician scientists with the basic knowledge, as they attempt to translate it into rational treatments for glaucoma.

To achieve the goal for this book, we have invited leaders in the various fields to review our current understanding of glaucoma from epidemiology and genetics, through molecular, cellular, and tissue responses, to the mechanisms of the glaucomas and the mechanisms by which we manage them. We are grateful to all the contributors of the book and hope that the contents will be of value to the reader, as we work together to prevent the blindness of glaucoma.

Joyce Tombran-Tink, PhD
Colin J. Barnstable, DPhil
M. Bruce Shields, MD

REFERENCES
Contents

Preface ... vii
Contributors .. xv
Companion CD .. xix

Part I Epidemiology of Glaucoma

1 Age and Racial Variation in the Prevalence of Open-Angle Glaucoma in the USA
 Joshua D. Stein and Paul P. Lee 3

2 Epidemiology of and Risk Factors for Primary Open-Angle Glaucoma
 Paulus T. V. M. de Jong, Nomdo M. Jansonius,
 Roger C. W. Wolfs, and Richard H. C. Zegers 19

3 The Reykjavik Eye Study on Prevalence of Glaucoma in Iceland and Identified Risk Factors
 Fridbert Jonasson, Arsaell Arnarsson, and Thor Eysteinsson 35

4 Defined Glaucoma in Chinese Population
 Chun Zhang, Ningli Wang, and Wei Wang 49

5 The Wroclaw Epidemiological Study
 Screening Possibilities of Glaucoma Detection
 Radoslaw Kaczmarek and Maria H. Nizankowska 63

Part II Mechanisms of Intraocular Pressure Elevation in the Glaucomas

6 Pretrabecular Mechanisms of Intraocular Pressure Elevation
 Sarwat Salim and M. Bruce Shields 83

7 Glaucomatous Changes in the Trabecular Meshwork
 Douglas H. Johnson and Elke Lutjen-Drecoll 99

8 Trabecular Mechanisms of Intraocular Pressure Elevation
 Pseudoexfoliation Syndrome
 Ursula Schlötzer-Schrehardt and Gottfried O. H. Naumann 117
Contents

9 Post-Trabecular Glaucomas with Elevated Episcleral Venous Pressure

Augusto Paranhos, Jr, João Antonio Prata, Jr, Paulo Augusto de Arruda Mello, and Felício Aristóteles da Silva

10 Angle-Closure Glaucomas

Anterior (Pulling) Mechanisms

Malik Y. Kahook and Joel S. Schuman

11 Angle-Closure Glaucomas

Posterior (Pushing) Mechanisms with Pupillary Block

Takashi Kanamoto and Hiromu K. Mishima

12 Angle-Closure Glaucomas

Posterior (Pushing) Mechanisms Without Pupillary Block

Yaniv Barkana, Clement C. Tham, Syril K. Dorairaj, and Robert Ritch

Part III Genetics of Glaucoma

13 Genetics and Glaucoma Susceptibility

Karim F. Damji and R. Rand Allingham

14 Myocilin Mutations and Their Role in Open-Angle Glaucoma

Paul N. Baird

15 The Functional Role of Myocilin in Glaucoma

Ernst R. Tamm

16 Roles of CYP1B1, Optineurin, and WDR36 Gene Mutations in Glaucoma

Mansoor Sarfarazi, Sharareh Monemi, Dharamainder Choudhary, Tayebeh Rezaie, and John B. Schenkman

17 Genetic Association in the Open-Angle Glaucomas

Hui-Ju Lin and Fuu-Jen Tsai

18 ApoE Polymorphisms and Severity of Open-Angle Glaucoma

Chi Pui Pang, Clement C. Tham, and Dennis Shun Chiu Lam

Part IV Molecular and Cellular Responses in the Eye to Glaucoma

19 Changes in Aqueous Humor Dynamics with Age and Glaucoma

20 Mechanosensitive Genes in the Trabecular Meshwork at Homeostasis

Elevated Intraocular Pressure and Stretch

Teresa Borrás
21 Reactive Astrocytes in the Glaucomatous Optic Nerve Head
 Protective and Destructive Mechanisms 363
 M. Rosario Hernandez and Bin Liu

22 Optic Neuropathy and Ganglion Cell Degeneration
 in Glaucoma
 Mechanisms and Therapeutic Strategies 393
 Dong Feng Chen and Kin-Sang Cho

23 Proteomics in Defining Pathogenic Processes Involved in
 Glaucomatous Neurondegeneration 425
 Gülgün Tezel

24 Proteomic Advances Toward Understanding Mechanisms of
 Glaucoma Pathology .. 443
 Sanjoy K. Bhattacharya and John W. Crabb

25 Molecular and Cellular Responses in the Eye
 to Glaucoma
 Ocular Gene Expression in Experimental Glaucoma 459
 Tomonari Ojima and Nagahisa Yoshimura

Part V Ocular Tissue and Psychophysiological Responses
 in Glaucoma

26 Ocular Biomechanics in Glaucoma 471
 C. Ross Ethier, Victor H. Barocas, and J. Crawford Downs

27 Intraocular Pressure, Perfusion Pressure, and Optic Nerve
 Energy Metabolism ... 491
 Einar Stefánsson

28 Optic Nerve
 Physiology and Mechanisms of Glaucomatous Atrophy 517
 Makoto Aihara and Goji Tomita

29 Psychophysiology of Glaucoma
 From Form to Function 527
 Chris A. Johnson and Shaban Demirel

Part VI Models of Glaucoma

30 The Primate Model of Experimental Glaucoma 551
 Arthur J. Weber and Suresh Viswanathan

31 Involvement of Inflammation in a Mouse Model of Inherited
 Pigmentary Glaucoma .. 579
 Wei Cao

32 Use of Purified Retinal Ganglion Cells for an In Vitro Model
 to Study Glaucoma ... 601
 Yasumasa Otori
Part VII Therapeutic Modalities

33 Pharmacological Therapies for Managing Glaucoma 611
Jess T. Whitson and Nalini K. Aggarwal

34 Redox-Based Therapies for Neuroprotection 645
Leonard A. Levin

35 Neuroprotective Signaling Pathways in Glaucoma 657
Frédéric Lebrun-Julien and Adriana Di Polo

36 Role of Selective Laser Trabeculoplasty in the Management of Glaucoma 683
Mark A. Latina, Navin Prasad, and Jorge A. Alvarado

37 Mechanisms and Mechanics of Incisional Surgery for Glaucoma 693
Robert D. Fechtner and Albert S. Khouri

38 Aqueous Shunts ... 715
D. S. Minckler and S. Mosaed

39 New Approaches to the Surgical Management of the Glaucomas 739
Carl B. Camras and M. Bruce Shields

Index .. 753
Contributors

Nalini K. Aggarwal • Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
Makoto Aihara • Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, Japan
R. Rand Allingham • Duke University Eye Center, Durham, NC
Jorge A. Alvarado • Department of Ophthalmology, University of California San Francisco, San Francisco, CA
Arsaell Arnarsson • Department of Ophthalmology, University of Iceland, Reykjavik, Iceland
Paul N. Baird • Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
Yaniv Barkana • Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel
Victor H. Barocas • Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
Sanjoy K. Bhattacharya • Bascom Palmer Eye Institute, University of Miami, Miami, FL
Teresa Borrás • Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC
Carl B. Camras • Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
Wei Cao • Department of Ophthalmology, University of Okalahoma Health Sciences Center, Dean A. McGee Eye Institute, Oklahoma City, OK
Dong Feng Chen • Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
Kin-Sang Cho • Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
Dharamainder Choudhary • Department of Surgery, University of Connecticut Health Center, Farmington, CT
John W. Crabb • Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH
Karim F. Damji • University of Ottawa Eye Institute, Ottawa, Ontario, Canada
Felicio Aristóteles da Silva • Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
Paulo Augusto de Arruda Mello • Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
Paulus T. V. M. de Jong • The Netherlands Institute of Neuroscience, Amsterdam, The Netherlands
Shaban Demirel • Devers Eye Institute, Portland, OR
xvi Contributors

ADRIANA DI POLO • Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
SYRIL K. DORAIRAJ • Department of Ophthalmology, The New York Eye and Ear Infirmary, New York, NY
J. CRAWFORD DOWNS • Devers Eye Institute, Portland, OR
C. ROSS ETHIER • Department of Vision Science and Ophthalmology, University of Toronto, Toronto, Ontario, Canada
THOR EYSTEINSSON • Department of Ophthalmology, University of Iceland, Reykjavik, Iceland
ROBERT D. FECHTNER • Institute of Ophthalmology and Visual Science, Newark, NJ
B’ANN T. GABELT • Department of Ophthalmology and Visual Science, University of Wisconsin, Madison, WI
M. ROSARIO HERNANDEZ • Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL
NOMDO M. JANSONIUS • Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
CHRIS A. JOHNSON • Devers Eye Institute, Portland, OR
DOUGLAS H. JOHNSON • Department of Ophthalmology, Mayo Clinic, Rochester, MN
FRIDBERT JONASSON • Department of Ophthalmology, University of Iceland, Reykjavik, Iceland
RADOSLAW KACZMAREK • Department of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland
MALIK Y. KAHOOK • Rocky Mountain Lions Eye Institute, Denver, CO
TAKASHI KANAMOTO • Department of Ophthalmology and Visual Science, Hiroshima University School of Medicine, Hiroshima, Japan
PAUL L. KAUFMAN • Department of Ophthalmology and Visual Science, University of Wisconsin, Madison, WI
ALBERT S. KHOUROU • Institute of Ophthalmology and Visual Science, Newark, NJ
DENNIS SHUN CHIU LAM • Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
MARK A. LATINA • Department of Ophthalmology, Tufts University School of Medicine, Boston, MA
FRÉDÉRIC LEBRUN-JULIEN • Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
PAUL P. LEE • Department of Ophthalmology, Duke University Medical Center, Durham, NC
LEONARD A. LEVIN • Department of Ophthalmology, University of Montreal, Madison, WI
HUI-JU LIN • Department of Medical Genetics, China Medical University Hospital and Asai University, Taichung, Taiwan
BIN LIU • Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL
ELKE LUTJEN-DRECOLL • Department of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
D. S. Minckler • Department of Ophthalmology, University of California Irvine, Irvine, CA
Hiromu K. Mishima • Department of Ophthalmology, Hiroshima University School of Medicine, Hiroshima, Japan
Sharareh Monemi • Department of Surgery, University of Connecticut Health Center, Farmington, CT
S. Mosaed • Department of Ophthalmology, University of California Irvine, Irvine, CA
Gottfried O. H. Naumann • Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
Maria H. Nizankowska • Department of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland
Tomonari Ojima • Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
Yasumasa Otori • Department of Ophthalmology and Visual Science, Osaka University Medical School, Osaka, Japan
Chi Pui Pang • Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
Augusto Paranhos, Jr • Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
Navin Prasad • Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA
João Antonio Prata, Jr • Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
Tayebeh Rezaie • Department of Surgery, University of Connecticut Health Center, Farmington, CT
Robert Ritch • Department of Ophthalmology, The New York Eye and Ear Infirmary, New York, NY
Sarwat Salim • Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT
Mansoor Sarfarazi • Department of Surgery, University of Connecticut Health Center, Farmington, CT
John B. Schenkman • Department of Pharmacology, University of Connecticut Health Center, Farmington, CT
Ursula Schlötzner-Schrehardt • Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
Joel S. Schuman • Eye and Ear Institute, Pittsburgh, PA
M. Bruce Shields • Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT
Einar Stefánsson • Department of Ophthalmology, University of Iceland, Reykjavik, Iceland
Joshua D. Stein • Department of Ophthalmology, Duke University Medical Center, Durham, NC
Ernst R. Tamm • Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
JAMES C. H. TAN • Department of Ophthalmology and Visual Science, University of Wisconsin, Madison, WI
GÜLGÜN TEZEL • Kentucky Lions Eye Center, Louisville, KY
CLEMENT C. THAM • Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
GOJI TOMITA • Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, Japan
FUU-JEN TSAI • Department of Medical Genetics, China Medical University Hospital and Asai University, Taichung, Taiwan
SURESHELL VISWANATHAN • Indiana University School of Optometry, Bloomington, IN
NINGLI WANG • Tongren Eye Center, Beijing, China
WEI WANG • Peking University Eye Center, Beijing, China
ARTHUR J. WEBER • Department of Physiology, Michigan State University, East Lansing, MI
JESS T. WHITSON • Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
ROGER C. W. WOLFS • Department of Epidemiology and Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
NAGAHISA YOSHIMURA • Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
RICHARD H. C. ZEGERS • Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
CHUN ZHANG • Peking University Eye Center, Beijing, China
Companion CD

Color versions of illustrations listed here may be found on the Companion CD attached to the inside back cover. The image files are organized into folders by chapter number and are viewable in most Web browsers. The number following “f” at the end of the file name identifies the corresponding figure in the text. The CD is compatible with both Mac and PC operating systems.

Chapter 1, Fig. 4, p. 14
Chapter 4, Fig. 1, p. 53
Chapter 6, Figs. 1A, 1B, 1C, 2–7, p. 86, 87, 90, 91
Chapter 7, Figs. 1, 6, 7, 10 p. 101, 103, 104, 106
Chapter 8, Fig. 4 p. 125
Chapter 9, Fig. 1 p. 140
Chapter 11, Figs. 2, 4, 6 p. 169, 171, 172
Chapter 12, Figs. 3, 6, 7 p. 177, 180, 181
Chapter 13, Figs. 2, 3 p. 198, 199
Chapter 15, Fig. 1 p. 224
Chapter 20, Figs. 1–3 p. 331, 335, 336
Chapter 21, Figs. 2, 5, 7, 9, 10, 11 p. 368, 372, 377, 380, 381, 382
Chapter 24, Fig. 1 p. 446
Chapter 25, Figs. 1, 2 p. 460, 462
Chapter 26, Fig. 5 p. 482
Chapter 27, Figs. 4, 5, 10, 11, 12, 14, 15, 17, 18 p. 496, 497, 500, 505, 506, 507, 508, 509, 509
Chapter 29, Figs. 1, 2, 3, 4, 7, 10 p. 529, 531, 532, 533, 538, 543
Chapter 33, Fig. 1 p. 623
Chapter 34, Fig. 1 p. 651
Chapter 36, Figs. 1A, 1B, 02, 03, 04 p. 684, 684, 685, 686, 687
Chapter 38, Figs. 1, 2, 3, 4 p. 717, 726, 729, 730