To my wife Maria and my son George.

— Aristidis Veves

To my wife Robina and beautiful daughters: Imaan, Hana and Ayesha.

— Rayaz A. Malik
It has been almost a decade since the first edition of *Clinical Management of Diabetic Neuropathy* was published. Since then, all societies have seen an explosion in obesity and diabetes. As a result, there is also an explosion in long-term diabetes complications, including diabetic neuropathy. Diabetic neuropathy therefore remains a major health problem that has not only serious consequences for the patient but also carries a significant financial burden for the health care-providing organizations of every society.

Another change that has taken place since the last edition is the accumulation of considerable data that has drastically expanded our knowledge regarding the pathophysiology and natural history of the disease. Unfortunately, this expansion in our knowledge has not been accompanied by success in treating diabetic neuropathy. Thus, considerable clinical research efforts that employed various therapeutic modalities, including aldose reductase inhibitors, nerve growth factor, and PKC beta inhibitors, failed to provide positive results and are currently not expected to gain approval for clinical use.

For *Diabetic Neuropathy: Clinical Management, Second Edition*, we have made every effort to reflect the above changes. We have included new chapters that focus more detail on the pathophysiology of the disease, and we have also expanded the sections regarding the diagnosis and the management of the various presentations of diabetic neuropathy. We feel very fortunate that we were able to recruit all leading authorities in their respective fields, and we believe that this has tremendously increased the quality of this edition. We therefore hope that this edition will be helpful not only to the practicing clinicians but also to researchers who would like to examine this condition in more detail.

We would like to sincerely thank all of the contributors to *Diabetic Neuropathy: Clinical Management, Second Edition*, as it is their hard work that has resulted in this successful textbook. We would like also to thank Humana Press for their trust in our abilities and all of their help in accomplishing this project.

Aristidis Veves, MD, DSc

Rayaz A. Malik, MBChB, PhD
The images listed below appear in the color insert within the text.

Color Plate 1. *Fig. 5, Chapter 6:* Bar charts and Western blots showing the effects of insulin, fidarestat and the p38 mitogen-activated protein kinases inhibitor, SB239063. *(See complete caption on p. 103.)*

Color Plate 2. *Fig. 5, Chapter 8:* Axoglial dysjunction is a characteristic degenerative change of type 1 DPN. *(See complete caption on p. 142.)*

Color Plate 3. *Fig. 2, Chapter 13:* (A) Localization of CML. (B) Quantification of staining intensities of epineurial vessels, perineurium, and endoneurial vessels. (C) Comparison of the staining intensity for CML and the receptor for advanced glycation end products. *(See complete caption on p. 234.)*

Color Plate 4. *Fig. 3, Chapter 17:* Normal human epidermal and dermal innervation visualized with confocal microscopy. *(See complete caption on p. 297.)*

Color Plate 5. *Fig. 5, Chapter 17:* (A) Method to measure collateral sprouting of human epidermal nerve fibers. (B) Example of collateral sprouting. *(See complete caption on p. 302.)*

Color Plate 6. *Fig. 7, Chapter 17:* For each subject, a regression line from postcapsaicin time-points is generated and the slope of this line is used as the rate of regeneration. *(See complete caption on p. 304.)*
Color Plate 1. Bar charts and Western blots showing the effects of insulin, fidarestat and the p38 mitogen-activated protein kinases inhibitor, SB239063. (Fig. 5, Chapter 6; see complete caption on p. 103.)
Color Plate 2. Axoglial dysjunction is a characteristic degenerative change of type 1 DPN. (Fig. 5, Chapter 8; see complete caption on p. 142.)
Color Plate 3. (A) Localization of CML. (B) Quantification of staining intensities of epineurial vessels, perineurium, and endoneurial vessels. (C) Comparison of the staining intensity for CML and the receptor for advanced glycation end products. (Fig. 2, Chapter 13; see complete caption on p. 234.)

Color Plate 4. Normal human epidermal and dermal innervation visualized with confocal microscopy. (Fig. 3, Chapter 17; see complete caption on p. 297.)
Color Plate 5. (A) Method to measure collateral sprouting of human epidermal nerve fibers. (B) Example of collateral sprouting. (Fig. 5, Chapter 17; see complete caption on p. 302.)

Color Plate 6. For each subject, a regression line from postcapsaicin time-points is generated and the slope of this line is used as the rate of regeneration. (Fig. 7, Chapter 17; see complete caption on p. 304.)
CONTENTS

Preface .. vii
List of Color Images .. viii
Contributors ... xi

1 Historical Aspects of Diabetic Neuropathies ... 1
 Vladimir Skljarevski

2 The Epidemiology of Diabetic Neuropathy ... 7
 Stephanie Wheeler, Nalini Singh, and Edward J. Boyko

3 Genomics of Diabetic Neuropathy ... 31
 Andrew G. Demaine and Bingmei Yang

4 Transgenic and Gene Knockout Analysis of Diabetic Neuropathy 51
 Sookja K. Chung and Stephen S. M. Chung

5 Hyperglycemia-Initiated Mechanisms in Diabetic Neuropathy 69
 Irina G. Obrosova

6 Effectors—Sonic Hedgehog and p38 Mitogen-Activated Protein Kinase 91
 Sally A. Price, Rebecca C. Burnand, and David R. Tomlinson

7 Neuronal and Schwann Cell Death in Diabetic Neuropathy 113
 James W. Russell, Rita M. Cowell, and Eva L. Feldman

8 Metabolic-Functional-Structural Correlations in Somatic Neuropathies in the Spontaneously Type 1 and Type 2 Diabetic BB-Rats ... 133
 Anders A. F. Sima, Weixian Zhang, and Hideki Kamiya

9 Experimental Diabetic Autonomic Neuropathy ... 153
 Phillip A. Low

10 Spinal Cord: Structure and Function in Diabetes ... 165
 Andrew P. Mizisin, Corinne G. Jolivalt, and Nigel A. Calcutt

11 Diabetic Encephalopathy .. 187
 Geert Jan Biessels

12 Microangiopathy, Diabetes, and the Peripheral Nervous System 207
 Douglas W. Zochodne

13 Pathogenesis of Human Diabetic Neuropathy ... 231
 Rayaz Ahmed Malik and Aristides Veves

14 Clinical Features of Diabetic Polyneuropathy ... 243
 Solomon Tesfaye

ix
15 Micro- and Macrovascular Disease in Diabetic Neuropathy259
Aristidis Veves and Antonella Caselli

16 Clinical Diagnosis of Diabetic Neuropathy275
Vladimir Skljarevski and Rayaz A. Malik

17 Punch Skin Biopsy in Diabetic Neuropathy293
Michael Polydefkis

18 Aldose Reductase Inhibitors for the Treatment
 of Diabetic Neuropathy ..309
Aristidis Veves

19 Other Therapeutic Agents for the Treatment
 of Diabetic Neuropathy ...321
Gary L. Pittenger, Henri Pharson, Jagdeesh Ullal,
 and Aaron I. Vinik

20 Pathophysiology of Neuropathic Pain339
Misha-Miroslav Backonja

21 Treatment of Painful Diabetic Neuropathy351
Andrew J. M. Boulton

22 Focal and Multifocal Diabetic Neuropathy367
Gérard Said

23 Hypoglycemia and the Autonomic Nervous System379
Roy Freeman

24 Cardiovascular Autonomic Neuropathy389
Martin J. Stevens

25 Postural Hypotension and Anhidrosis413
Phillip A. Low

26 Gastrointestinal Syndromes Due to Diabetes Mellitus433
Juan-R. Malagelada

27 Genitourinary Complications ...453
Dan Ziegler and Christian Stief

28 Management of Diabetic Foot Complications473
Thomas E. Lyons

Index ...507
CONTRIBUTORS

MISHA-MIROSŁAW BACKONJA • Department of Neurology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI

GEERT JAN BIESSELS • Department of Neurology of the Rudolf Magnus Institute for Neuroscience, University Medical Centre, Utrecht, The Netherlands

ANDREW J. M. BOULTON • Department of Medicine, Manchester Royal Infirmary, Manchester, UK

EDWARD J. BOYKO • VA Puget Sound Healthcare System, Seattle, WA

REBECCA C. BURNAND • Faculty of Life Sciences, University of Manchester, Manchester, UK

NIGEL A. CALCUTT • Department of Pathology, University of California San Diego, La Jolla, CA

ANTONELLA CASELLI • Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

SOOKJA K. CHUNG • Department of Anatomy, The University of Hong Kong, Hong Kong, SAR China

STEPHEN S. CHUNG • Department of Physiology, The University of Hong Kong, Hong Kong, SAR China

RITA M. COWELL • Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL

ANDREW G. DEMAIN • Molecular Medicine Research Group, Peninsula Medical School, Plymouth, UK

EVA L. FELDMAN • Department of Neurology, University of Michigan, Ann Arbor, MI

ROY FREEMAN • Autonomic Lab, Beth Israel Deaconess Medical Center, Boston MA

JOHN W. GRIFFIN • Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD

CORINNE G. JOLIVALT • Department of Pathology, University of California San Diego, La Jolla, CA

HIDEKI KAMIYA • Department of Pathology, Wayne State University, Detroit, MI

PHILLIP A. LOW • Department of Neurology, Mayo Clinic, Rochester, MN

THOMAS E. LYONS • Division of Podiatric Medicine and Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA

JUAN-R. MALAGELADA • Digestive System Research Unit, Hospital General Vall d’Hebron, Autonomous University of Barcelona, Barcelona, Spain

RAYAZ A. MALIK • Division of Cardiovascular Medicine, University of Manchester, Manchester, UK

JUSTIN McARTHUR • Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD

ANDREW P. MIZISIN • Department of Pathology, University of California San Diego, La Jolla, CA

IRINA G. OBROSOVA • Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
HENRI PHARSON • Department of Internal Medicine, Strelitz Diabetes Institutes, Eastern Virginia Medical School, Norfolk, VA

GARY L. PITTENGER • Department of Internal Medicine, Strelitz Diabetes Institutes, Eastern Virginia Medical School, Norfolk, VA

MICHAEL POLYDEFKIS • Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD

SALLY A. PRICE • Faculty of Life Sciences, University of Manchester, Manchester, UK

JAMES W. RUSSELL • Department of Neurology, University of Maryland, Baltimore, MD

GÉRARD SAID • Service de Neurologie and Laboratoire Louis Ranvier, Hopital de Bicetre, Assistance Publique-Hopitaux de Paris and Universite Paris-sud, Paris, France

ANDERS A. F. SIMA • Departments of Pathology and Neurology and The Morris Hood Comprehensive Diabetes Centre, Wayne State University, Detroit, MI

NALINI SINGH • VA Puget Sound Health Care System, Seattle, WA

VLADIMIR SKLJAREVSKI • Lilly Research Laboratories, Indianapolis, IN

MARTIN J. STEVENS • Division of Medical Sciences, University of Birmingham, Birmingham, UK

CHRISTIAN STIEF • LMU University of Munich Hospital, Clinic for Urology, Munich, Germany

GORAN SUNDKVIST • Department of Endocrinology, University of Lund, Malmo University Hospital, Sweden

SOLOMON TESFAYE • Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield, UK

DAVID R. TOMLINSON • Faculty of Life Sciences, University of Manchester, Manchester, UK

JAGDEESH ULLAL • Department of Internal Medicine, Strelitz Diabetes Institutes, Eastern Virginia Medical School, Norfolk, VA

ARISTIDIS VEVES • Microcirculation Lab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

AARON I. VENK • Department of Internal Medicine, Strelitz Diabetes Institutes, Eastern Virginia Medical School, Norfolk, VA

STEPHANIE WHEELER • VA Puget Sound Health Care System, Seattle, WA

BINGMEI YANG • Molecular Medicine Research Group, Peninsula Medical School, Plymouth, UK

WEIXIAN ZHANG • Department of Pathology, Wayne State University, Detroit, MI

DAN ZIEGLER • German Diabetes Center, Leibniz Center at the Heinrich Heine University, Institute for Clinical Diabetology, Düsseldorf, Germany

DOUGLAS W. ZOCHODNE • Department of Clinical Neurosciences, Foothills Medical Center, University of Calgary, Alberta, Canada