Adenovirus Methods and Protocols

SECOND EDITION

Volume 2: Ad Proteins, RNA, Lifecycle, Host Interactions, and Phylogenetics

Edited by

William S. M. Wold
Ann E. Tollefson

Department of Molecular Microbiology and Immunology
Saint Louis University School of Medicine
St. Louis, Missouri

HUMANA PRESS TOTOWA, NEW JERSEY
Preface

Since their discovery in 1954, adenoviruses (Ads) have become a model for studying virology, as well as molecular and cellular biology. Ads are easily grown and manipulated, stable, and versatile. Ads replicate reproducibly, can transform rodent cells to an oncogenic state, can induce tumors in certain animals, and have been instrumental in defining key cellular proteins and mechanisms such as splicing, transcriptional regulation through transcription adaptor proteins, and regulation of cell division and apoptosis. About half of the approximately 35 Ad proteins physically interact with cellular proteins and subvert them for use by the virus. In recent years, Ads have become premier tools in vector technology and in experimental gene therapy research.

The *Adenovirus Methods and Protocols* volumes are designed to help new researchers to conduct studies involving Ads and to help established researchers to branch into new areas. The chapters, which are written by prominent investigators, provide a brief general introduction to a topic, followed by tried and true step-by-step methods pertinent to the subject. We thank returning contributors for their updated and new chapters, and thank new contributors who have expanded the content of this book.

Adenovirus Methods and Protocols, Second Edition, Volume 2: Ad Proteins, RNA, Lifecycle, Host Interactions, and Phylogenetics, focuses on methods that elucidate and quantitate the interactions of Ad with the host. This volume provides methods for analysis of transcription, splicing, RNA interference, subcellular localization of proteins during infection, and cell cycle effects. Four chapters are devoted to definition of interactions of viral and cellular proteins (by co-immunoprecipitation or tandem mass spectrometry) or protein interactions with viral DNA (by chromatin immunoprecipitation and electrophoretic mobility shift assays). Other chapters provide thorough descriptions of the use of microinjection procedures, transformation assays, and NK cell-mediated cytolysis. Several chapters describe characterization of specific Ad proteins (hexon, fiber, or protease/proteinase). Two chapters are devoted to defining the phylogenetic relationships of Ads.

We thank contributors for sharing their secrets, John Walker for his patience, and especially Dawn Schwartz, without whose expert assistance this work would not have been possible.

William S. M. Wold
Ann E. Tollefson
Contents

Preface ..v
Contents of the Companion Volume ..ix
Contributors ..xi

1 Analysis of the Efficiency of Adenovirus Transcription 1
 Cristina Iftode and S. J. Flint

2 The Use of In Vitro Transcription to Probe Regulatory Functions of Viral Protein Domains ... 15
 Paul M. Loewenstein, Chao-Zhong Song, and Maurice Green

3 Preparation of Soluble Extracts From Adenovirus-Infected Cells for Studies of RNA Splicing ... 33
 Oliver Mühlemann and Göran Akusjärvi

4 In Vitro Methods to Study RNA Interference During an Adenovirus Infection ... 47
 Gunnar Andersson, Ning Xu, and Göran Akusjärvi

5 Simultaneous Detection of Adenovirus RNA and Cellular Proteins by Fluorescent Labeling In Situ ...63
 Eileen Bridge

6 Study of Nucleolar Localization of Adenovirus Core Proteins 73
 David A. Matthews

7 Analysis of Adenovirus Infections in Synchronized Cells 83
 David A. Ornelles, Robin N. Broughton-Shepard, and Felicia D. Goodrum

8 Co-Immunoprecipitation of Protein Complexes103
 Peter Yaciuk

9 Chromatin Immunoprecipitation to Study the Binding of Proteins to the Adenovirus Genome In Vivo .. 113
 Jihong Yang and Patrick Hearing

10 Assaying Protein–DNA Interactions In Vivo and In Vitro Using Chromatin Immunoprecipitation and Electrophoretic Mobility Shift Assays .. 123
 Pilar Perez-Romero and Michael J. Imperiale

11 Identifying Functional Adenovirus–Host Interactions Using Tandem Mass Spectrometry .. 141
 Anuj Gaggar, Dmitry Shayakhmetov, and André Lieber

vii
12 The Use of Cell Microinjection for the In Vivo Analysis of Viral Transcriptional Regulatory Protein Domains157
Maurice Green, Andrew Thorburn, Robert Kern, and Paul M. Loewenstein

13 Determination of the Transforming Activities of Adenovirus Oncogenes ...187
Michael Nevels and Thomas Dobner

14 Human Adenovirus Type 12: Crossing Species Barriers to Immortalize the Viral Genome ...197
Walter Doerfler

15 Measurement of Natural-Killer Cell Lytic Activity of Adenovirus-Infected or Adenovirus-Transformed Cells.................................213
John M. Routes

16 A Flow Cytometric Assay for Analysis of Natural-Killer Cell-Mediated Cytolysis of Adenovirus-Transformed Cells221
Graham Bottley, Graham P. Cook, and G. Eric Blair

17 Large-Scale Purification and Crystallization of Adenovirus Hexon ..231
John J. Rux and Roger M. Burnett

18 Synthesis and Assay of Recombinant Adenovirus Protease 251
Joseph M. Weber

19 Assay for the Adenovirus Proteinase: Purification of the Enzyme and Synthesis of a Fluorogenic Substrate ..257
Walter F. Mangel and William J. McGrath

20 Cofactors of the Adenovirus Proteinase: Measuring Equilibrium Dissociation Constants and Stoichiometries of Binding269
Walter F. Mangel and William J. McGrath

21 Characterization of the Adenovirus Fiber Protein ..281
Jeffrey A. Engler and Jeong Shin Hong

22 Phylogenetic Analysis of Adenovirus Sequences ..299
Balázs Harrach and Mária Benkő

23 Assessment of Genetic Variability Among Subspecies B1 Human Adenoviruses for Molecular Epidemiology Studies335
Adriana E. Kajon and Dean D. Erdman

Index .. 357
CONTENTS OF THE COMPANION VOLUME

Volume 1: Adenoviruses, Ad Vectors, Quantitation, and Animal Models

1 Manipulation of Early Region 4
 Julie Boyer and Gary Ketner

2 Isolation, Growth, and Purification of Defective Adenovirus Deletion Mutants
 Gary Ketner and Julie Boyer

3 Construction of Adenovirus Type 5 Early Region 1 (E1) and 4 (E4) Virus Mutants
 Peter Groitl and Thomas Dobner

4 Construction of Mouse Adenovirus Type 1 Mutants
 Angela N. Cauthen, Amanda R. Welton, and Katherine R. Spindler

5 Generation of Recombinant Adenovirus Using Escherichia coli BJ5183 Recombination System
 P. Seshidhar Reddy, Shanthi Ganesh, Lynda Hawkins, and Neeraja Idamakanti

6 Production and Release Testing of Ovine Atadenovirus Vectors
 Gerald W. Both, Fiona Cameron, Anne Collins, Linda J. Lockett, and Jan Shaw

7 Construction of Capsid-Modified Recombinant Bovine Adenovirus Type 3
 Alexander N. Zakhartchouk, Qiaohua Wu, and Suresh K. Tikoo

8 Adenovirus Capsid Chimeras: Fiber Terminal Exon Insertions/Gene Replacements in the MLTU
 Jason Gall, John Schoggins, and Erik Falck-Pedersen

9 Temperature-Sensitive Replication-Competent Adenovirus shRNA Vectors to Study Cellular Genes in Virus-Induced Apoptosis
 Thirugnana Subramanian and Govindaswamy Chinnadurai

10 Evaluating Apoptosis in Tumor Cells Infected With Adenovirus Expressing p53 Tumor Suppressor Gene
 Elizabeth Perron, M. Behzad Zafar, Amanda Pister, Zhen-Guo Wang, Jun Tian, and Prem Seth

11 Growth and Purification of Enteric Adenovirus Type 40
 Vivien Mautner
Immunocompetent, Semi-Permissive Cotton Rat Tumor Model for the Evaluation of Oncolytic Adenoviruses

Karoly Toth, Jacqueline F. Spencer, and William S. M. Wold

Use of the Syrian Hamster as an Animal Model for Oncolytic Adenovirus Vectors

Maria A. Thomas, Jacqueline F. Spencer, and William S. M. Wold

A Real-Time PCR Method to Rapidly Titer Adenovirus Stocks

Maria A. Thomas, Drew L. Lichtenstein, Peter Krajcsi, and William S. M. Wold

Detection and Quantitation of Subgroup C Adenovirus DNA in Human Tissue Samples by Real-Time PCR

C. T. Garnett, Ching-I Pao, and Linda R. Gooding

Flow Cytometric Detection of Adenoviruses and Intracellular Adenovirus Proteins

Graham Bottley, John R. Holt, Nicola J. James, and G. Eric Blair

Capture ELISA Quantitation of Mouse Adenovirus Type 1 in Infected Organs

Amanda R. Welton and Katherine R. Spindler

Preparation and Titration of CsCl-Banded Adenovirus Stocks

Ann E. Tollefson, Mohan Kuppuswamy, Elena V. Shashkova, Konstantin Doronin, and William S. M. Wold
Contributors

GÖRAN AKUSJÄRVI, PhD • Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala, Sweden

GUNNAR ANDERSSON, PhD • Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala, Sweden

G. ERIC BLAIRE, PhD • School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom

MÁRIA BENKO, DVM, PhD • Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary

GRAHAM BOTTLEY, MSc, PhD • School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom

EILEEN BRIDGE, PhD • Department of Microbiology, Miami University, Oxford, OH

ROBIN N. BROUGHTON-SHEPARD, PhD • Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC

ROGER M. BURNETT, PhD • The Wistar Institute, Philadelphia, PA

GRAHAM P. COOK, BSc, PhD • School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom

THOMAS Dobner, PhD • Institut fuer Medizinische Mikrobiologie und Hygiene, Universitaet Regensburg, Regensburg, Germany

WALTER DOERFLER, MD • Institute for Clinical and Molecular Virology, Erlangen University, Erlangen, Germany

JEFFREY A. ENGLER, PhD • University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, Birmingham, AL

DEAN D. ERDMAN, PhD • Respiratory Virus Diagnostic Program, Respiratory and Gastroenteritis Virus Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA

S. J. FLINT, PhD • Department of Molecular Biology, Princeton University, Princeton, NJ

ANUI GAGGAR, PhD • Division of Medical Genetics, University of Washington, Seattle, WA

FELICIA D. GOODRUM, PhD • Department of Microbiology and Immunology, BIO5 Institute, University of Arizona, Tuscon, AZ

MAURICE GREEN, PhD • Institute for Molecular Virology, Saint Louis University School of Medicine, St. Louis, MO

BALÁZS HARRACH, DVM, PhD, DSc • Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
PATRICK HEARING, PhD • Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY
JEONG SHIN HONG, PhD • Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL
CRISTINA IFTODE, PhD • Department of Biological Sciences, Rowan University, Glassboro, NJ
MICHAEL J. IMPERIALE, PhD • Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
ADRIANA E. KAISON, PhD • Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM
ROBERT KERN, BA • Eppendorf, North America, Westbury, NY
ANDRÉ LIEBER, MD, PhD • Division of Medical Genetics, University of Washington, Seattle, WA
PAUL M. LOEWENSTEIN, BS • Institute for Molecular Virology, Saint Louis University School of Medicine, St. Louis, MO
WALTER F. MANGEL, PhD • Biology Department, Brookhaven National Laboratory, Upton, NY
DAVID A. MATTHEWS, PhD • Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
WILLIAM J. MCGRATH, PhD • Biology Department, Brookhaven National Laboratory, Upton, NY
OLIVER MÜHLEMANN, PhD • Institute of Cell Biology, University of Bern, Bern, Switzerland
MICHAEL NEVELS, PhD • Institut fuer Medizinische Mikrobiologie und Hygiene, Universitaet Regensburg, Regensburg, Germany
DAVID A. ORNELLES, PhD • Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
PILAR PEREZ-ROMERO, PhD • Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
JOHN M. ROUTES, MD • Department of Asthma, Allergy, and Immunology, Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI
JOHN J. RUX, PhD • The Wistar Institute, Philadelphia, PA
DMITRY SHAYAKHMETOV, PhD • Division of Medical Genetics, University of Washington, Seattle, WA
CHAO-ZHONG SONG, PhD • Institute for Molecular Virology, Saint Louis University School of Medicine, St. Louis, MO
ANDREW THORBURN, PhD • University of Colorado Comprehensive Cancer Center, University of Colorado Health Science Center, Aurora, Colorado
JOSEPH M. WEBER, PhD • Département de Microbiologie et d’Infectiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
NING XU, BMS • Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala, Sweden
PETER YACIUUK, PhD • Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
JIHONG YANG, MD • Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, NJ