Circadian Rhythms
Circadian Rhythms

Methods and Protocols

Edited by

Ezio Rosato

Department of Genetics
University of Leicester
Leicester, United Kingdom
Preface

Rhythmicity is a pervasive feature of life. Most organisms, from bacteria to humans, have the ability to interpret and predict the daily cycles of our world, which indicates the presence of a timing device, a circadian (from the Latin *circa diem*, “about a day”) clock, able to synchronize the endogenous functions with the external environment. Furthermore, the ability to manipulate the temporal dimension offers ground to complexity, as the organisms have the opportunity to separate competing or even incompatible functions within the same cell. Thus, it is not surprising that natural selection is operating on the circadian clock, an additional reminder of the importance of this regulatory pathway. Selection has been shown directly by competition experiments between clocks with different periodicities, and indirectly by studying the molecular evolution of clock genes.

In the last 20 years, the molecular mechanisms underlying the functioning of the circadian clock have been actively investigated for several model systems. It has emerged that circadian timing affects every kind of organism and, in multicellular organisms, many different cell types. Basic and specialized cell functions are regulated by the clock through multiple molecular events. Furthermore, although the major divisions of life use different molecular cogs in the building of the pacemaker, there is a common design based on interlocked negative feedback loops. Many components and molecular functions can feed into the loops at different levels, making the architecture of the clock intrinsically robust and open to a wide range of interactions with other major regulatory pathways. This has become even more apparent after microarray studies have shown that key regulators of metabolic pathways, cell cycle components, ion channels, and immuno-response genes are all transcribed in a rhythmic fashion. Further developments have extended the description of the interconnection between the circadian and cell cycles and sketched a role for clock dysfunctions in cancer development. Although we have begun to understand the basic mechanisms of the clock, we still do not have a definitive answer to many questions. We still ask ourselves how the clock generates rhythmic phenotypes in the model systems we have studied for so long. Moreover, we start asking with more insistence how the circadian clock is regulated in other organisms, especially those also showing robust rhythmicity in other temporal domains.
To answer those questions, we have at our disposal a large arsenal of methodologies. These range from a whole organism approach, analyzing physiology and behavior, to a more reductionist attitude using genetics, molecular and cellular biology, and post-genomics technologies. The power of this multilevel approach is visible in the huge progress achieved by the chronobiology field in the last 20 years. However, the variety of methods, further multiplied by the peculiarities of each model system, and the hitches added by the temporal dimension, might have a hard impact on the novice.

The aim of *Circadian Rhythms: Methods and Protocols* has been to provide a resource that can be adopted by several types of users: those who are new to circadian biology, those who are already active in the field but are interested in learning new techniques, and researchers who are considering moving to a new model system or undertaking comparative studies and would like to consult protocols applied to different organisms before starting the study of new species. This task has been achieved by collecting a full range of methods, many provided by leading experts in the field, that should satisfy the needs of the novice, by illustrating procedures that have been recently introduced in circadian studies, and by presenting, for many basic techniques, variations to take into account the peculiarities of different model systems.

Finally, I would like to express my gratitude to the contributors who have shared their protocols and experience with the community, making the realization of *Circadian Rhythms: Methods and Protocols* possible.

Ezio Rosato
Contents

Preface ..ⅴ
Contributors ...xi

PART I. OVERVIEWS

1. Light, Photoreceptors, and Circadian Clocks 3
 Russell G. Foster, Mark W. Hankins, and Stuart N. Peirson
2. Statistical Analysis of Biological Rhythm Data 29
 Harold B. Dowse

PART II. RHYTHMIC READOUTS

3. Rhythmic Conidiation in Neurospora crassa 49
 Cas Kramer
4. Monitoring and Analyzing Drosophila Circadian Locomotor Activity ... 67
 Mauro A. Zordan, Clara Benna, and Gabriella Mazzotta
5. Automated Video Image Analysis of Larval Zebrafish Locomotor Rhythms ... 83
 Gregory M. Cahill
6. Locomotor Activity in Rodents .. 95
 Gianluca Tosini
7. Analysis of Circadian Leaf Movement Rhythms in Arabidopsis thaliana ... 103
 Kieron D. Edwards and Andrew J. Millar
8. Detection of Rhythmic Bioluminescence From Luciferase Reporters in Cyanobacteria ... 115
 Shannon R. Mackey, Jayna L. Ditty, Eugenia M. Clerico, and Susan S. Golden
9. Analysis of Rhythmic Gene Expression in Adult Drosophila Using the Firefly Luciferase Reporter Gene 131
 Ralf Stanewsky
10. Monitoring Circadian Rhythms in Arabidopsis thaliana Using Luciferase Reporter Genes 143
 Anthony Hall and Paul Brown
PART III. IDENTIFICATION OF CLOCK GENES

11. Specialized Techniques for Site-Directed Mutagenesis in Cyanobacteria ... 155
 Eugenia M. Clerico, Jayna L. Ditty, and Susan S. Golden

 Kruno Sveric, Moyra Mason, Till Roenneberg, and Martha Merrow

13. Mutagenesis With *Drosophila* .. 187
 Patrick Emery

14. Mutagenesis in *Arabidopsis* .. 197
 Jodi Maple and Simon G. Møller

15. Yeast Two-Hybrid Screening ... 207
 Jodi Maple and Simon G. Møller

16. Microarrays: Quality Control and Hybridization Protocol 225
 Ken-ichiro Uno and Hiroki R. Ueda

17. Microarrays: Statistical Methods for Circadian Rhythms 245
 Rikuhiro Yamada and Hiroki R. Ueda

18. Identification of Clock Genes Using Difference Gel Electrophoresis .. 265
 Natasha A. Karp and Kathryn S. Lilley

PART IV. GENE EXPRESSION: RNA

19. Isolation of Total RNA From *Neurospora* Mycelium 291
 Cas Kramer

20. RNA Extraction From *Drosophila* Heads 305
 Patrick Emery

21. Extraction of Plant RNA ... 309
 Michael G. Salter and Helen E. Conlon

22. RNA Extraction From Mammalian Tissues 315
 Stuart N. Peirson and Jason N. Butler

23. Northern Analysis of Sense and Antisense frequency RNA in *Neurospora crassa* .. 329
 Cas Kramer and Susan K. Crosthwaite

24. RNase Protection Assay .. 343
 Patrick Emery

25. Quantitative Polymerase Chain Reaction 349
 Stuart N. Peirson and Jason N. Butler
PART V. GENE EXPRESSION: PROTEINS

26. Protein Extraction, Fractionation, and Purification From Cyanobacteria ... 365
 Natalia B. Ivleva and Susan S. Golden
27. Protein Extraction From Drosophila Heads .. 375
 Patrick Emery
28. Plant Protein Extraction .. 379
 Helen E. Conlon and Michael G. Salter
29. Protein Extraction From Mammalian Tissues 385
 Choogon Lee
30. Western Blotting ... 391
 Choogon Lee
31. Coimmunoprecipitation Assay .. 401
 Choogon Lee
32. In Vitro Phosphorylation and Kinase Assays in Neurospora crassa 407
 Lisa Franchi and Giuseppe Macino

PART VI. IN VITRO SYSTEMS

33. Basic Protocols for Drosophila S2 Cell Line: Maintenance and Transfection .. 415
 M. Fernanda Ceriani
34. Coimmunoprecipitation on Drosophila Cells in Culture 423
 M. Fernanda Ceriani
35. Basic Protocols for Zebrafish Cell Lines: Maintenance and Transfection ... 429
 Daniela Vallone, Cristina Santoriello, Srinivas Babu Gondi, and Nicholas S. Foulkes
36. Manipulation of Mammalian Cell Lines for Circadian Studies 443
 Filippo Tamanini
37. Reporter Assays .. 455
 M. Fernanda Ceriani
38. Use of Firefly Luciferase Activity Assays to Monitor Circadian Molecular Rhythms In Vivo and In Vitro .. 465
 Wangjie Yu and Paul E. Hardin
39. Suprachiasmatic Nucleus Cultures That Maintain Rhythmic Properties In Vitro ... 481
 K. Tominaga-Yoshino, Tomoko Ueyama, and Hitoshi Okamura
PART VII. MICROSCOPY ANALYSIS

40. RNA In Situ Hybridizations on Drosophila Whole Mounts 495
Corinna Wülbeck and Charlotte Helfrich-Förster

41. In Situ Hybridization of Suprachiasmatic Nucleus Slices 513
Horacio O. de la Iglesia

42. Immunohistochemistry in Drosophila: Sections and Whole Mounts ... 533
Charlotte Helfrich-Förster

43. Immunocytochemistry on Suprachiasmatic Nucleus Slices 549
Marta Muñoz Llamosas

44. Immunofluorescence Analysis of Circadian Protein Dynamics
in Cultured Mammalian Cells .. 561
Filippo Tamanini

Index ... 569
Contributors

CLARA BENNA • Dipartimento di Biologia, Università di Padova, Padova, Italy
PAUL BROWN • Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, United Kingdom
JASON N. BUTLER • Division of Circadian and Visual Neuroscience, University of Oxford, Oxford, United Kingdom
GREGORY M. CAHILL • Department of Biology and Biochemistry, University of Houston, Houston, TX
M. FERNANDA CERIANI • Department Behavioral Genetics, Fundación Instituto Leloir, Buenos Aires, Argentina
EUGENIA M. CLERICI • Department of Biology, Texas A&M University, College Station, TX
HELEN E. CONLON • Department of Biology, University of Leicester, Leicester, United Kingdom
SUSAN K. CROSTHWATE • Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
HORACIO O. DE LA IGLESIA • Department of Biology, University of Washington, Seattle, WA
JAYNA L. DITTY • Department of Biology, University of St. Thomas, St. Paul, MN
HAROLD B. DOWSE • Department of Biological Sciences, University of Maine, Orono, ME
KIERON D. EDWARDS • Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
PATRICK EMERY • Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA
RUSSELL G. FOSTER • Division of Circadian and Visual Neuroscience, University of Oxford, Oxford, United Kingdom
NICHOLAS S. FOULKES • Department of Genetics, Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
LISA FRANCHI • Dipartimento di Biotecnologie Cellulari ed Ematologia, Universita’ di Roma, Rome, Italy
SUSAN S. GOLDEN • Department of Biology, Texas A&M University, College Station, TX
SRINIVAS BABU GONDI • Department of Genetics, Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
ANTHONY HALL • School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
MARK W. HANKINS • Division of Circadian and Visual Neuroscience, University of Oxford, Oxford, United Kingdom
PAUL E. HARDIN • Department of Biology and Center for Research on Biological Rhythms, Texas A&M University, College Station, TX

CHARLOTTE HELFRICH-FÖRSTER • Institut für Zoologie, Universität Regensburg, Regensburg, Germany

NATALIA B. IVLEVA • Department of Biology, Texas A&M University, College Station, TX

NATASHA A. KARP • Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom

CAS KRAMER • Department of Genetics, University of Leicester, Leicester, United Kingdom

CHOOGON LEE • Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL

KATHRYN S. LILLEY • Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom

MARTA MUÑOZ LLAMOSAS • Department of Molecular and Integrative Neuroscience, Imperial College London, London, United Kingdom

GIUSEPPE MACINO • Dipartimento di Biotecnologie Cellulari ed Ematologia, Universita’ di Roma, Rome, Italy

SHANNON R. MACKLEY • Department of Biology, Texas A&M University, College Station, TX

JODI MAPLE • Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway

MOYRA MASON • Department of Biology, University of Padua, Padua, Italy

GABRIELLA MAZZOTTA • Dipartimento di Biologia, Università di Padova, Padova, Italy

MARTHA MERROW • Department of Chronobiology, Rijksuniversiteit, Groningen, The Netherlands

ANDREW J. MILLAR • Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom; and Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, United Kingdom

SIMON G. MÖLLER • Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway

HITOSHI OKAMURA • Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Kobe, Japan

STUART N. PEIRSON • Division of Circadian and Visual Neuroscience, University of Oxford, Oxford, United Kingdom

TILL ROENNEBERG • Institute for Medical Psychology, University of Munich, Munich, Germany

MICHAEL G. SALTER • Department of Biology, University of Leicester, Leicester, United Kingdom
Cristina Santoriello • Department of Genetics, Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
Ralf Stanewsky • School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
Kruno Sveric • Institute for Medical Psychology, University of Munich, Munich, Germany
Filippo Tamanini • Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
Keiko Tominaga-Yoshino • Department of Neuroscience, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
Gianluca Tosini • Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
Hiroki R. Ueda • Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan
Tomoko Ueyama • Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Kobe, Japan
Ken-ichiro Uno • Functional Genomics Subunit, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan
Daniele Vallone • Department of Genetics, Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
Corinna Wülbeck • Institut für Zoologie, Universität Regensburg, Regensburg, Germany
Rikuhiro Yamada • Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan
Wangjie Yu • Department of Biology and Center for Research on Biological Rhythms, Texas A&M University, College Station, TX
Mauro Zordan • Dipartimento di Biologia, Universita’ di Padova, Padova, Italy