Cardiovascular Disease
Preface

Cardiovascular disease is the leading cause of death in developed countries, but is quickly becoming an epidemic in such well-populated countries as China, India, and other developing nations. Cardiovascular research is the key to the prevention, diagnosis, and management of cardiovascular disease. Vigorous and cross-disciplinary approaches are required for successful cardiovascular research. As the boundaries between different scientific disciplines, particularly in the life sciences, are weakening and disappearing, a successful investigator needs to be competent in many different areas, including genetics, cell biology, biochemistry, physiology, and structural biology. The newly developed field of molecular medicine is a cross-disciplinary science that seeks to comprehend disease causes and mechanisms at the molecular level, and to apply this basic research to the prevention, diagnosis, and treatment of diseases and disorders. This volume in the *Methods in Molecular Medicine* series, *Cardiovascular Disease*, provides comprehensive coverage of both basic and the most advanced approaches to the study and characterization of cardiovascular disease. These methods will advance knowledge of the mechanisms, diagnoses, and treatments of cardiovascular disease.

Cardiovascular Disease is a timely volume in which the theory and principles of each method are described in the Introduction section, followed by a detailed description of the materials and equipment needed, and step-by-step protocols for successful execution of the method. A notes section provides advice for potential problems, any modifications, and alternative methods.

We have gathered a group of highly experienced cardiovascular researchers to describe in detail the most important techniques in molecular medicine that are employed in genetic, molecular, cellular, structural, and physiological studies of cardiovascular disease. The thirty-seven chapters in both volumes cover varied methods that include the following:

- Cytogenetic analyses (karyotyping, FISH, array CGH, somatic hybrid analysis).
- Linkage programs for mapping chromosomal locations of disease genes.
- Bioinformatics.
- Human genetics for identifying genes for both monogenic and common complex diseases (positional cloning and genome-wide association study).
- Mouse genetics for identifying genes for complex disease traits (chromosome substitution strains).
- Mutation screening, genetic testing, and high throughput genotyping of single-nucleotide polymorphisms (SNPs).
- Microarray (Genechips) analysis.
Preface

- Proteomics.
- Generation of knockout, knock-in, and conditional mutant mice and transgenic overexpression mice for cardiovascular genes.
- Animal models for coronary artery disease, heart failure, hypertension, cardiac arrhythmias, and thrombosis.
- Cardiac physiology (recording techniques for action potentials, sodium and other ionic currents, and optical mapping).
- Cell biology (isolation of adult cardiomyocytes, endothelial cells, smooth muscle cells, angiogenesis, cell proliferation, adhesion, migration, and apoptosis assays).
- Gene transfer and gene therapy (adenovirus vectors, HIV-based retroviral vectors, nucleofection).
- Structural biology (X-ray crystallography, NMR spectroscopy, and electron cryomicroscopy).
- Stem cells.

Cardiovascular Disease should be particularly useful for inspiring undergraduate students, graduate students, postdoctoral fellows, cardiology fellows, clinicians, basic scientists, and other researchers who are entering a new area of cardiovascular research to experience the new challenges. It will serve as a valuable resource book for active researchers when they design new experiments. Although many techniques are described for studying cardiovascular disease, they should be equally valuable for researchers studying other human diseases.

I especially thank Susan De Stefano for her valuable assistance in preparing, reformatting and compiling all the chapters. I also thank Professor John M. Walker, the Series Editor for his invitation to develop this book and his help in editing this book. Finally, I thank all of the authors for the time-consuming job of preparing their chapters.

Qing K. Wang, PhD, MBA
Contents

Preface ..v
Contents of the Companion Volume ..xix
Contributors ..xi

1 Cytogenetic Analysis of Cardiovascular Disease: Karyotyping
 Malgorzata Jarmuz and Lisa G. Shaffer .. 1

2 Fluorescence In Situ Hybridization in Cardiovascular Disease
 Ayse Anil Timur and Qing K. Wang ... 11

3 Comparative Genomic Hybridization by Microarray
 for the Detection of Cytogenetic Imbalance
 Malgorzata Jarmuz, Blake C. Ballif,
 Catherine D. Kashork, Aaron P. Theisen,
 Bassem A. Bejjani, and Lisa G. Shaffer .. 23

4 Construction of Somatic Cell Hybrid Lines: Fusion of Mouse
 Thymidine Kinase-Deficient 3T3 Fibroblasts and Human
 Lymphoblastoid Cells
 Ayse Anil Timur and Qing K. Wang ... 33

5 LINKAGE Programs: Linkage Analysis for Monogenic
 Cardiovascular Diseases
 Lin Li, Qing K. Wang, and Shaoqi Rao ... 41

6 SAGE Programs: Model-Free Linkage Analysis for Complex
 Cardiovascular Phenotypes
 Shaoqi Rao and Qing K. Wang ... 61

7 Linkage Analysis for Complex Diseases Using Variance
 Component Analysis: SOLAR
 Ulrich Broeckel, Karen Maresso, and Lisa J. Martin 91

8 Genome Resources and Comparative Analysis Tools
 for Cardiovascular Research
 George E. Liu and Mark D. Adams ... 101

9 Positional Cloning: Single-Gene Cardiovascular Disorders
 Duanxiang Li .. 125

10 Positional Cloning: Complex Cardiovascular Traits
 Jeffrey Gulcher and Kari Stefansson ... 137
11 Chromosome Substitution Strains: A New Way to Study Genetically Complex Traits
 Annie E. Hill, Eric S. Lander, and Joseph H. Nadeau 153

12 Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms Conferring Risk of Myocardial Infarction
 Kouichi Ozaki and Toshihiro Tanaka ... 173

13 Mutation Detection in Congenital Long QT Syndrome: Cardiac Channel Gene Screen Using PCR, dHPLC, and Direct DNA Sequencing
 David J. Tester, Melissa L. Will, and Michael J. Ackerman 181

14 High-Throughput Single-Nucleotide Polymorphisms Genotyping: TaqMan Assay and Pyrosequencing Assay
 Gong-Qing Shen, Albert Luo, and Qing K. Wang 209

 Xiyuan Sun and Baochuan Guo .. 225

Index ... 231
CONTENTS OF THE COMPANION VOLUME
Volume 2: Molecular Medicine

1 Microarray Analysis of Cardiovascular Diseases
 Stephen R. Archacki and Qing K. Wang

2 Proteomics in Cardiovascular Research
 Sun-Ah You and Qing K. Wang

3 Developing and Evaluating Genomics- or Proteomics-
 Based Diagnostic Tests: Statistical Perspectives
 Xuejun Peng

4 Animal Models for Disease: Knockout, Knock-In,
 and Conditional Mutant Mice
 David F. LePage and Ronald A. Conlon

5 Generation of Transgenic Mice for Cardiovascular Research
 Xiao-Li Tian and Qing K. Wang

6 Quantitative Assay for Mouse Atherosclerosis
 in the Aortic Root
 Julie Baglione and Jonathan D. Smith

7 Animal Models for Heart Failure
 Sudhiranjan Gupta and Subha Sen

8 Animal Models for Hypertension/Blood Pressure Recording
 Ralph Plehm, Marcos E. Barbosa and Michael Bader

9 Animal Models for Cardiac Arrhythmias
 Sandro L. Yong and Qing K. Wang

10 Optical Mapping of Shock-Induced Arrhythmogenesis
 in the Rabbit Heart With Healed Myocardial Infarction:
 Fluorescent Imaging With a Photodiode Array
 Yuanna Cheng

11 Methods for Studying Voltage-Gated Sodium Channels
 in Heterologous Expression Systems
 Margaret S. Dice, Tyce Kearl, and Peter C. Ruben

12 Laser-Induced Thrombosis in Zebrafish Larvae: A Novel
 Genetic Screening Method for Thrombosis
 Pudur Jagadeeswaran, Ryan Paris, and Prashanth Rao
13 Methods for Isolation of Endothelial and Smooth Muscle Cells and In Vitro Proliferation Assays
 Ganapati H. Mahabeleshwar, Payaningal R. Somanath, and Tatiana V. Byzova

14 Applications of Adenoviral Vector-Mediated Gene Transfer in Cardiovascular Research
 Fang Xu, Delila Serra, and Andrea Amalfitano

15 Murine and HIV-Based Retroviral Vectors for In Vitro and In Vivo Gene Transfer
 Ronald W. Alfa and Armin Blesch

16 Efficient Transfection of Primary Cells Relevant for Cardiovascular Research by Nucleofection
 Corinna Thiel and Michael Nix

17 Cell Adhesion and Migration Assays
 Dmitry A. Soloviev, Elzbieta Pluskota, and Edward F. Plow

18 Apoptosis Assays
 Marcela Oancea, Suparna Mazumder, Meredith E. Crosby, and Alexandru Almasan

19 Preparation of Protein Crystals for X-Ray Structural Study
 Soichi Takeda

20 Structural Elucidation of Integrin $\alpha_{IIb}\beta_3$ Cytoplasmic Domain by Nuclear Magnetic Resonance Spectroscopy
 Jun Qin

21 Applications of Electron Cryo-Microscopy to Cardiovascular Research
 Ashraf Kitmitto

22 Stem Cells in Cardiovascular Disease: Methods and Protocol
 Marc S. Penn and Niladri Mal
Contributors

MICHAEL J. ACKERMAN • Departments of Internal Medicine, Pediatrics and Molecular Pharmacology, and Experimental Therapeutics; Divisions of Cardiovascular Diseases and Pediatric Cardiology, Mayo Clinic College of Medicine, Rochester, MN

MARK D. ADAMS • Department of Genetics, Case Western Reserve University, Cleveland, OH

BLAKE C. BALLIF • Signature Genomic Laboratories, LLC, Spokane, WA

BASSEM A. BEJANI • Health Research and Education Center, Washington State University, and Signature Genomic Laboratories, LLC, Spokane, WA

ULRICH BROECKEL • Department of Medicine, Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI

JEFFREY GULCHER • Decode Genetics, Reykjavik, Iceland

BAOCHUAN GUO • Department of Chemistry, Cleveland State University, Cleveland, OH

ANNIE E. HILL • Whitehead Institute for Biomedical Research, Cambridge, MA

MALGORZATA JARMUZ • Health Research and Education Center, Washington State University, Spokane, WA

CATHERINE D. KASHORK • Signature Genomic Laboratories, LLC, Spokane, WA

ERIC S. LANDER • The Broad Institute of MIT and Harvard, Cambridge, MA

DUANXIANG LI • Department of Medicine/Cardiology, Oregon Health Science University, Portland, OR

LIN LI • Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, OH

GEORGE E. LIU • Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, US Department of Agriculture-Agriculture Research Service, Beltsville, MD

ALBERT LUO • Center for Molecular Genetics, The Cleveland Clinic Foundation, Cleveland, OH

KAREN MARESSO • Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI

LISA J. MARTIN • Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati School of Medicine, Cincinnati, OH

JOSEPH H. NADEAU • Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
Kouichi Ozaki • RIKEN, SNP Research Center, Tokyo, Japan
Shaoqi Rao • Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, OH
Lisa G. Shaffer • Health Research and Education Center, Washington State University and Signature Genomic Laboratories, LLC, Spokane, WA
Gong-Qing Shen • Center for Molecular Genetics, The Cleveland Clinic Foundation, Cleveland, OH
Kari Stefansson • Decode Genetics, Reykjavik, Iceland
Xiyuan Sun • Department of Chemistry, Cleveland State University, Cleveland, OH
Toshihiro Tanaka • RIKEN, SNP Research Center, Tokyo, Japan
David J. Tester • Departments of Internal Medicine, Pediatrics and Molecular Pharmacology and Experimental Therapeutics; Divisions of Cardiovascular Diseases and Pediatric Cardiology, Mayo Clinic College of Medicine, Rochester, MN
Aaron P. Theisen • Health Research and Education Center, Washington State University, Spokane, WA
Ayse Anil Timur • Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, OH
Qing K. Wang • Department of Molecular Cardiology, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH
Melissa L. Will • Departments of Internal Medicine, Pediatrics and Molecular Pharmacology & Experimental Therapeutics; Divisions of Cardiovascular Diseases and Pediatric Cardiology, Mayo Clinic College of Medicine, Rochester, MN