FROM MELANOCYTES TO MELANOMA
FROM MELANOCYTES TO MELANOMA

THE PROGRESSION TO MALIGNANCY

Edited by

VINCENT J. HEARING, PhD
Laboratory of Cell Biology
National Cancer Institute
National Institutes of Health
Bethesda, MD

STANLEY P. L. LEONG, MD
Department of Surgery
University of California, San Francisco, School of Medicine
San Francisco, CA
The normal precursor of malignant melanoma is the melanocyte, a cell of neural crest origin. In their embryological state, neural crest cells are unique in that they dissociate from the notochord on days 10–14 and migrate out, or “metastasize,” to numerous sites of the body as their new “homes.” These cells are known as “argentaffin cells” and include the melanocytes. Of interest is that melanocytes can also accumulate abnormally in clusters as nevi and thereafter reside in the lower stratum of the epithelium just above the level of the dermis (and occasionally in the dermis). The most important function of these melanocytes either singularly or in clusters is to manufacture melanin, a pigmented biopolymer that is distributed throughout the skin to protect the host from the damage of ultraviolet radiation. Indeed, the amount of pigmentation sets the background of racial groups in human beings. It is estimated that the number of melanocytes in the body is relatively constant between different racial groups, although the production of melanin varies dramatically from one race to the other. Melanocytes in lightly colored skin make the least amount of melanin, whereas melanocytes in darker skin make larger amounts of melanin, which provides significantly greater protection against the direct ultraviolet radiation at the equator and its subsequent photocarcinogenesis.

It is in the transformation and mutation of these melanocytes that melanoma cells are derived. Approximately 95% of the time, melanoma can be traced to a pre-existing nevus, but about 5% of the time, the original site may not be determined because melanoma presents as metastatic melanoma. Although melanoma is a potentially incurable disease, especially in its late stage, the overall incidence of melanoma is relatively low compared with other types of cancer. Of special interest is the incidence of cutaneous melanoma, which is dramatically lower in the more heavily pigmented populations, such as blacks and Asians. The mechanisms of melanogenesis have been studied, but are still not fully understood. It is our hope that *From Melanocytes to Melanoma: The Progression to Malignancy* presents all available evidence to date in order to establish a scholarly record of what is known about the progression of changes from melanocytes to melanoma. The intriguing differences between the lighter and darker skinned racial groups with respect to the different incidences of melanoma need to be explained. Patients with xeroderma pigmentosum (XP), a multigenic, multiallelic, autosomal recessive disease, have more than a 1000-fold increased risk of cutaneous melanoma. Thus, XP deserves special attention, since mechanisms responsible for the genesis of melanoma in these patients can be understood and applied to melanoma in general. One important goal of these studies is to understand the molecular mechanisms involved in melanogenesis and in malignant transformation of melanocytes. Potential therapeutic maneuvers may then be developed to either block these steps or use relevant specific molecules of melanogenesis as targets of attack.

From Melanocytes to Melanoma: The Progression to Malignancy is divided into three parts, with Part I addressing the basic biology of melanocytes and the molecular mechanisms involved in the development, migration, and differentiation of melanoblasts to melanocytes. Part II is devoted to elucidating processes involved in the transformation of melanocytes to malignant melanoma. Finally, Part III focuses on mechanisms
involved in the further progression of primary melanomas into invasive and metastatic melanomas. We hope that by studying the molecular signals involved in these processes, we will be able to develop model systems by which we can trace the molecular mechanisms involved in the malignant transformation of melanocytes to malignant melanoma. From Melanocytes to Melanoma: The Progression to Malignancy will be a valuable reference for all biologists and basic scientists who are interested in the biology of pigment cells, as well as to pathologists, dermatologists, surgeons, and medical oncologists who are interested in the diagnosis and treatment of melanoma.

Vincent J. Hearing, PhD
Stanley P. L. Leong, MD
ACKNOWLEDGMENT

This work was supported in part by a grant from the Llumar (UV) Window Film (www.windowfilm.com).
CONTENTS

Preface .. v
Acknowledgment .. vii
Contributors .. xiii
List of Color Plates .. xvii

PART I. MELANOCYTE DEVELOPMENT AND FUNCTION

1. The Origin and Development of Neural Crest-Derived Melanocytes.. 3
 Debra L. Silver and William J. Pavan

2. MITF: A Matter of Life and Death for Developing Melanocytes .. 27
 Heinz Arnheiter, Ling Hou, Minh-Thanh T. Nguyen, Keren Bismuth, Tamas Csermely, Hideki Murakami, Susan Skuntz, WenFang Liu, and Kapil Bharti

3. MITF: Critical Regulator of the Melanocyte Lineage .. 51
 Erez Feige, Laura L. Poling, and David E. Fisher

4. Melanocytes and the Transcription Factor Sox10 ... 71
 Michael Wegner

5. Human Cutaneous Pigmentation: A Collaborative Act in the Skin, Directed by Paracrine, Autocrine, and Endocrine Factors and the Environment .. 81
 Zalfa A. Abdel-Malek and Ana Luisa Kadekaro

 Yuji Yamaguchi and Vincent J. Hearing

PART II. MELANOCYTE TRANSFORMATION AND PROGRESSION TO MELANOMA

7. Altered Signal Transduction in Melanoma .. 119
 Pablo López Bergami, Anindita Bhoumik, and Ze’ev Ronai

8. BRN2 in Melanocytic Cell Development, Differentiation, and Transformation 149
 Anthony L. Cook, Glen M. Boyle, J. Helen Leonard, Peter G. Parsons, and Richard A. Sturm

9. The Dynamic Roles of Cell-Surface Receptors in Melanoma Development 169
 Dong Fang and Meenhard Herlyn

10. Familial Melanoma Genes, Melanocyte Immortalization, and Melanoma Initiation 183
 Dorothy C. Bennett
11. Genetic Progression From Melanocyte to Malignant Melanoma 197
 Boris C. Bastian

12. The Multiple Roles of the Oncogenic Protein SKI
 in Human Malignant Melanoma ... 211
 Dahu Chen, Qiushi Lin, I. Saira Mian, Jon Reed,
 and Estela E. Medrano

13. RB/E2F Regulation and Dual Activity in the Melanocytic System 223
 Ruth Halaban

 Claudia Wellbrock

15. The Biology and Genetics of Melanoma .. 265
 Norman E. Sharpless and Lynda Chin

16. The Biology of Xeroderma Pigmentosum: Insights Into the Role
 of Ultraviolet Light in the Development of Melanoma 291
 James E. Cleaver

17. Divergent Pathways to Cutaneous Melanoma 311
 David C. Whiteman and Adèle C. Green

18. Pigmentation, DNA Repair, and Candidate Genes:
 The Risk of Cutaneous Malignant Melanoma
 in a Mediterranean Population .. 329
 Maria Teresa Landi

19. Low-Penetration Genotypes, Pigmentation Phenotypes,
 and Melanoma Etiology ... 347
 Peter A. Kanetsky and Timothy R. Rebbeck

20. The Biology of Melanoma Progression: From Melanocyte
 to Metastatic Seed .. 365
 A. Neil Crowson, Cynthia Magro, and Martin C. Mihm, Jr.

21. Optical Imaging Analysis of Atypical Nevi and Melanoma 399
 Amanda Pfaff Smith and Dorothea Becker

22. Proteomics Analysis of Melanoma Cell Lines
 and Cultured Melanocytes .. 409
 Katheryn A. Resing and Natalie G. Ahn

PART III. PRIMARY INVASIVE MELANOMA TO METASTATIC MELANOMA

23. Paradigm of Metastasis for Malignant Melanoma 429
 Stanley P. L. Leong

24. Repair of UV-Induced DNA Damage and Melanoma Risk 441
 Qingyi Wei

25. High-Risk Factors for Melanoma Metastasis 455
 Neil A. Accortt and Seng-jaw Soong

26. Role of Melanoma Inhibitory Activity in Early Development
 of Malignant Melanoma .. 475
 Anja-Katrin Bosserhoff
CONTRIBUTORS

ZALFA A. ABDEL-MALEK • Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH

NEIL A. ACCORTT • Biostatistics and Bioinformatics Unit, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL

NATALIE G. AHN • Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO

HEINZ ARNHEITER • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

MENASHE BAR-ELI • Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX

BORIS C. BASTIAN • Departments of Dermatology and Pathology, University of California, San Francisco, CA

DOROTHEA BECKER • Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA

YAACOV BEN-DAVID • Molecular and Cellular Biology, Sunnybrook and Women’s College Health Sciences Center and Toronto Sunnybrook Regional Cancer Centre; Department of Medical Biophysics, University of Toronto, Toronto, Canada

DOROTHY C. BENNETT • Department of Basic Medical Sciences, St. George’s Hospital Medical School, London, UK

PABLO LÓPEZ BERGAMI • Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY

KAPIL BHARTI • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

ANINDITA BHOUMIK • Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY

KEREN BISMUTH • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

ERNEST BORDEN • Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH

ANJA-KATRIN BOSSERHOFF • Institute of Pathology, University of Regensburg, Regensburg, Germany

GLEN M. BOYLE • Melanoma Genomics Group, Queensland Institute of Medical Research, Brisbane, Australia

DAHU CHEN • Department of Pathology, Huffington Center on Aging, Baylor College of Medicine, Houston, TX

KEVIN G. CHEN • Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD

LYNDA CHIN • Department of Medical Oncology, Dana-Farber Cancer Institute, and the Department of Dermatology, Harvard Medical School, Boston, MA

JAMES E. CLEAVER • Auerback Melanoma Laboratory, Department of Dermatology, University of California, San Francisco, CA
ANTHONY L. COOK • Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
A. NEIL CROWSON • Departments of Dermatology, Pathology, and Surgery, University of Oklahoma College of Medicine, Tulsa, OK
TAMAS CSERMELY • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
DAVID E. ELDEN • Division of Anatomic Pathology, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, PA
DONG FANG • Program of Tumor Biology, The Wistar Institute, Philadelphia, PA
EREZ FEIGE • Department of Pediatric Oncology and Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
DAVID E. FISHER • Department of Pediatric Oncology and Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
MICHAEL M. GOTTESMAN • Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
ADELE C. GREEN • Division of Population Studies and Human Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
RISHAB K. GUPTA • Department of Immunodiagnosis and Protein Biochemistry, John Wayne Cancer Institute, St. John’s Health Center, Santa Monica, CA
RUTH HALABAN • Department of Dermatology, Yale University School of Medicine, New Haven, CT
VINCENT J. HEARING • Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
MARY J. C. HENDRIX • Cancer Biology and Epigenomics Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
MEENHARD HERLYN • Program of Tumor Biology, The Wistar Institute, Philadelphia, PA
ANGELA R. HESS • Cancer Biology and Epigenomics Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
DAVE S. B. HOON • Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA
LING HOU • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
ANA LUISA KADEKARO • Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH
PETER A. KANETSKY • Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
MOHAMMED KASHANI-SABET • Auerback Melanoma Research Laboratory, University of California at San Francisco, San Francisco, CA
JULIAN A. KIM • Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH
MARIA TERESA LANDI • Division of Cancer Epidemiology and Genetics, Genetic Epidemiology Branch, National Cancer Institute, Bethesda, MD
J. HELEN LEONARD • Queensland Radium Institute Research Unit, Queensland Institute of Medical Research, Brisbane, Australia
STANLEY P. L. LEONG • Department of Surgery, University of California, San Francisco, School of Medicine, San Francisco, CA
Contributors

QIUSHI LIN • Huffington Center on Aging, Department of Pathology, Baylor College of Medicine, Houston, TX

WENFANG LIU • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

CYNTHIA MAGRO • Division of Dermatopathology, Department of Pathology, Ohio State University, College of Medicine and Public Health, Columbus, OH

STEVE R. MARTINEZ • Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA

ANA M. MCeLRATH-GARZA • Department of Immunodiagnosis and Protein Biochemistry, John Wayne Cancer Institute, St. John’s Health Center, Santa Monica, CA

ESTELA E. MEDRANO • Huffington Center on Aging, Department of Molecular and Cellular Biology, and Department of Pathology, Baylor College of Medicine, Houston, TX

I. SAIRA MIAN • Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA

MARTIN C. MIHM, JR. • Departments of Dermatology and Pathology, Harvard Medical School, Boston, MA

DONALD L. MORTON • Department of Surgical Oncology, John Wayne Cancer Institute, St. John’s Health Center, Santa Monica, CA

HIDEKI MURAKAMI • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

MINH-TANH T. NGUYEN • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

BRIAN J. PAK • Molecular and Cellular Biology, Sunnybrook and Women’s College Health Sciences Centre and Toronto Sunnybrook Regional Cancer Centre, Toronto, Canada

PETER G. PARSONS • Melanoma Genomics Group, Queensland Institute of Medical Research, Brisbane, Australia

WILLIAM J. PAVAN • Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD

LAURA L. POLINC • Department of Pediatric Oncology and Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

TIMOTHY R. REBBECK • Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA

JON REED • Department of Pathology, Baylor College of Medicine, Houston, TX

KATHRYN A. RESING • Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO

HEIKE RÖCKMANN • Skin Cancer Unit at the German Cancer Research Center, Heidelberg, Germany

ZE’EV RONAI • Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY

DIRK SCHADENDORF • Skin Cancer Unit at the German Cancer Research Center, Heidelberg, Germany

ELISABETH A. SEFTOR • Cancer Biology and Epigenomics Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
RICHARD E. B. SEFTOR • Cancer Biology and Epigenomics Program, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
NORMAN E. SHARPLESS • Department of Medicine and Genetics, The University of North Carolina School of Medicine, Chapel Hill, NC
DEBRA L. SILVER • Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
SUSAN SKUNTZ • Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
AMANDA PFAFF SMITH • Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
SENG-JAW SOONG • Biostatistics and Bioinformatics Unit, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
RICHARD A. STURM • Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
HIROYA TAKEUCHI • Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA
CARMEN TELLEZ • Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
MICHAEL WEGNER • Institut für Biochemie, Universität Erlangen-Nürnberg, Erlangen, Germany
QINGYI WEI • Department of Epidemiology, University of Texas M. D. Anderson Cancer Center, Houston, TX
CLAUDIA WELLBROCK • Signal Transduction Team, Cell and Molecular Biology Section, The Institute of Cancer Research, London, UK
DAVID C. WHITEMAN • Division of Population Studies and Human Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
YUJI YAMAGUCHI • Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
LIST OF COLOR PLATES

Color Plates follow p. 430

Color Plate 1.
Fig. 2, Chapter 11: Field cells in acral melanoma detected by fluorescence *in situ* hybridization. Single basal melanocytes with amplifications of cyclin D1 highlighted by arrowheads. (*See* discussion on p. 203.)

Fig. 6, Chapter 13: RB is required to suppress apoptosis in normal melanocytes. (A) Nonpigmented hair shaft of TAT-Cre-treated RB^{LoxP/LoxP} hair follicles compared with pigmented RB^{LoxP/+} hair shaft. (*See* complete caption on p. 232 and discussion on pp. 231–232.)

Color Plate 2.
Fig. 7, Chapter 13: RB is highly abundant in melanoma cells relative to normal melanocytes. (A) Western blot showing expression of RB in normal melanocytes (NM) vs melanoma cell strains from different tumors (1–8). (*See* complete caption on p. 233 and discussion on pp. 232–233.)

Fig. 4, Chapter 18: Structural model of the leucine to proline substitution at position 65 of p16 (from ref. 72). The model shows that the proline amino acid (indicated in orange), differently from the leucine (behind the proline), no longer makes hydrogen atoms available to the surface of the protein, possibly affecting the ability of this protein to complex or bind with its ligand. (*See* discussion on p. 336.)

Color Plate 3.
Fig. 2, Chapter 21: (A) Noninvasive optical imaging of melanoma xenografts. (*See* complete caption on pp. 406–407 and discussion on p. 406.)

Color Plate 4.
Fig. 2, Chapter 26: Detection of melanoma inhibitory activity (MIA) by immunohistochemistry. (*See* complete caption on p. 479 and discussion on p. 478.)

Fig. 1, Chapter 30: Diagrammatic representation of vasculogenesis, angiogenesis, and photomicroscopy of tumor cell vasculogenic mimicry. (*See* complete caption on p. 537 and discussion on p. 536.)