Chemical Genomics
Preface

Chemical genomics is an exciting new field that aims to transform biological chemistry into a high-throughput industrialized process, much in the same way that molecular biology has been transformed by genomics. The interaction of small organic molecules with biological systems (mostly proteins) underpins drug discovery in the pharmaceutical and biotechnology industries, and therefore a volume of laboratory protocols that covers the key aspects of chemical genomics would be of use to biologists and chemists in these organizations. Academic scientists have been exploring the functions of proteins using small molecules as probes for many years and therefore would also benefit from sharing ideas and laboratory procedures. Whatever the organizational backgrounds of the scientists involved, the challenges of extracting the maximum human benefit from genome sequencing projects remains considerable, and one where it is increasingly recognized that chemical genomics will play an important part.

Chemical Genomics: Reviews and Protocols is divided into two sections, the first being a series of reviews to describe what chemical genomics is about and to set the scene for the protocol chapters. The subject is introduced by Paul Caron, who explains the various “flavors” of chemical genomics. This is followed by Lutz Weber and Philip Dean who cover the interaction between organic molecules and protein targets from the different perspectives of laboratory experimentation and in silico design. The protocols begin with the methods developed in Christopher Lowes’ laboratory (Roque et al.) for what could be described as a classical example of chemical genomics, namely the design of small molecules as affinity ligands for specific protein families. The theme is continued with detailed protocols for in silico docking by Jongejan et al. that highlights the importance of computational approaches to protein–small molecule interactions. The remaining protocols are directed towards the aim of producing highly diverse collections of proteins, carbohydrates, and small molecules for use in arrays containing large numbers of molecules. This high-throughput approach to screening for interaction between small and large biological molecules is the essence of chemical genomics. The chapters by Ryu, Doyle, Murphy, Sawaasaki, Endo, Kohno, and Hoyt cover methods for the production of proteins and carbohydrates using different expression systems. Webster and Oxley give a protocol for analyzing the proteins using mass spectrometry. The techniques for arraying these proteins and carbohydrates on solid supports are detailed in the chapters by Blackburn, Marik, and Wang. Finally
an in vivo method for identifying small molecule–protein interactions is described by Khazak et al. using the yeast two-hybrid system.

Although we recognize that no single book on chemical genomics can be totally comprehensive in its coverage, we hope that the protocols here, in covering the key elements of the subject, will be of genuine use to the wide variety of scientists in this rapidly expanding field.

Edward D. Zanders
# Contents

Preface ..............................................................................................................v  
Contributors .....................................................................................................ix  

## PART I REVIEWS

1 Introduction to Chemical Genomics  
   *Paul R. Caron* .......................................................... 3  
2 Chemistry for Chemical Genomics  
   *Lutz Weber* .............................................................. 11  
3 Computer-Aided Design of Small Molecules  
   for Chemical Genomics  
   *Philip M. Dean* ......................................................... 25  

## PART II PROTOCOLS

4 Design, Synthesis, and Screening of Biomimetic Ligands  
   for Affinity Chromatography  
   *Ana Cecília A. Roque, Geeta Gupta, and Christopher R. Lowe* ........ 43  
5 The Role and Application of *In Silico* Docking  
   in Chemical Genomics Research  
   *Aldo Jongejan, Chris de Graaf, Nico P. E. Vermeulen,  
    Rob Leurs, and Iwan J. P. de Esch* ...................................... 63  
6 Synthesis of Complex Carbohydrates and Glyconjugates:  
   *Enzymatic Synthesis of Globotetraose Using β-1,3-N-Acetylgalactosaminyltransferase LgtD From Haemophilus influenzae Strain Rd*  
   *Kang Ryu, Steven Lin, Jun Shao, Jing Song, Min Chen,  
    Wei Wang, Hanfen Li, Wen Yi, and Peng George Wang* ........... 93  
7 High-Throughput Cloning for Proteomics Research  
   *Sharon A. Doyle* ......................................................... 107  
8 Screening for the Expression of Soluble Recombinant Protein  
   in *Escherichia coli*  
   *Sharon A. Doyle* ......................................................... 115  
9 High-Throughput Purification of Hexahistidine-Tagged Proteins  
   Expressed in *E. coli*  
   *Michael B. Murphy and Sharon A. Doyle* ............................... 123
10 The Wheat Germ Cell-Free Expression System: Methods for High-Throughput Materialization of Genetic Information
   Tatsuya Sawasaki, Mudeppa D. Gouda, Takayasu Kawasaki, Takafumi Tsuboi, Yuzuru Tozawa, Kazuyuki Takai, and Yaeta Endo ................................................................. 131

11 Advances in Genome-Wide Protein Expression Using the Wheat Germ Cell-Free System
   Yaeta Endo and Tatsuya Sawasaki .......................................................... 145

12 Production of Proteins for NMR Studies Using the Wheat Germ Cell-Free System
   Toshiyuki Kohno ..................................................................................... 169

13 Adenoviral Expression of Reporter Proteins for High-Throughput Cell-Based Screening
   Jon Hoyt and Randall W. King .................................................................. 187

14 Fabrication of Protein Function Microarrays for Systems-Oriented Proteomic Analysis
   Jonathan M. Blackburn and Darren J. Hart ............................................ 197

15 Peptide and Small-Molecule Microarrays
   Jan Marik and Kit S. Lam ........................................................................ 217

16 Peptide Mass Fingerprinting: Protein Identification Using MALDI-TOF Mass Spectrometry
   Judith Webster and David Oxley ............................................................. 227

17 A Practical Protocol for Carbohydrate Microarrays
   Ruobing Wang, Shaoyi Liu, Dhaval Shah, and Denong Wang ............ 241

18 Development of a Yeast Two-Hybrid Screen for Selection of Human Ras–Raf Protein Interaction Inhibitors
   Vladimir Khazak, Erica A. Golemis, and Lutz Weber ................................ 253

Index ............................................................................................................... 273
Contributors

JONATHAN M. BLACKBURN • Department of Biotechnology, University of the Western Cape, Cape Town, South Africa; Procognia Ltd, Maidenhead, UK
PAUL R. CARON • Head of Informatics, Vertex Pharmaceuticals, Cambridge MA
MIN CHEN • The State Key of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, People’s Republic of China
PHILIP M. DEAN • Chief Scientific Officer, De Novo Pharmaceuticals Ltd, Cambridge, UK
SHARON A. DOYLE • Proteomics Group, DOE Joint Genome Institute, Walnut Creek, CA
YAE TA ENDO • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
IWAN J. P. DE ESCH • Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
ERICA A. GOLEMIS • Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA
MUDEPPA D. GOUDA • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
CHRIS DE GRAAF • Division of Molecular Toxicology, Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
GEETA GUPTA • Institute of Biotechnology, University of Cambridge, Cambridge, UK
DARREN J. HART • High Throughput Group, Grenoble Outstation, European Molecular Biology Laboratory, Grenoble, France
JON HOYT • Department of Cell Biology, Institute of Chemistry and Cell Biology, Boston, MA
ALDO JONGEJAN • Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
TAKAYASU KAWASAKI • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
VLADIMIR KHAZAK • Director of Biology, NexusPharma, Langhorne, PA
RANDALL W. KING • Department of Cell Biology, Institute of Chemistry and Cell Biology, Boston, MA
TOSHIYUKI KOHNO • Laboratory of Structural Biology, Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan

KIT S. LAM • Division of Hematology & Oncology, Department of Internal Medicine, UC Davis Cancer Center, University of California, Davis, CA

ROB LEURS • Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands

HANFEN LI • Department of Biochemistry, The Ohio State University, Columbus, OH

STEVEN LIN • Department of Biochemistry, The Ohio State University, Columbus, OH

SHAOYI LIU • Columbia Genome Center, Columbia University College of Physicians & Surgeons, New York, NY

CHRISTOPHER R. LOWE • Institute of Biotechnology, University of Cambridge, Cambridge, UK

JAN MARIK • Division of Hematology & Oncology, Department of Internal Medicine, UC Davis Cancer Center, University of California, Davis, CA

MICHAEL B. MURPHY • Proteomics Group, DOE Joint Genome Institute, Walnut Creek, CA

DAVID OXLEY • Proteomics Research Group, Babraham Institute, Cambridge, UK

ANA CECÍLIA A. ROQUE • Institute of Biotechnology, University of Cambridge, Cambridge, UK

KANG RYU • Department of Biochemistry, The Ohio State University, Columbus, OH

TATSUYA SAWASAKI • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan

DHAVAL SHAH • Columbia Genome Center, Columbia University College of Physicians & Surgeons, New York, NY

JUN SHAO • Department of Biochemistry, The Ohio State University, Columbus, OH

JING SONG • The State Key of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, People’s Republic of China

KAZUYUKI TAKAI • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan

YUZURU TOZAWA • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan

TAKAFUMI TSUBOI • Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
Contributors

NICO P. E. VERMEULEN • Division of Molecular Toxicology, Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands

DENONG WANG • Carbohydrate Microarray Laboratory, Departments of Genetics, Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA

PENG GEORGE WANG • Department of Biochemistry, The Ohio State University, Columbus, OH

RUOBING WANG • Carbohydrate Microarray Laboratory, Departments of Genetics, Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA

WEI WANG • The State Key of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, People’s Republic of China

LUTZ WEBER • President, NexusPharma, Langhorne, PA

JUDITH WEBSTER • Proteomics Research Group, Babraham Institute, Cambridge, UK

WEN Y1 • Department of Biochemistry, The Ohio State University, Columbus, OH

EDWARD D. ZANDERS • CamBP Ltd, Cambridge, UK