THE ONCOGENOMICS HANDBOOK
Biomarkers in Breast Cancer: Molecular Diagnostics for Predicting and Monitoring Therapeutic Effect, edited by Giampietro Gasparini and Daniel F. Hayes, 2005
Protein Tyrosine Kinases: From Inhibitors to Useful Drugs, edited by Doriana Fabbro and Frank McCormick, 2005
Death Receptors in Cancer Therapy, edited by Wafik S. El-Deiry, 2005
Bone Metastasis: Experimental and Clinical Therapeutics, edited by Gurmit Singh and Shafaat A. Rabbani, 2005
The Oncogenomics Handbook, edited by William J. LaRochelle and Richard A. Shimkets, 2005
Camptothecins in Cancer Therapy, edited by Thomas G. Burke and Val R. Adams, 2005
Combination Cancer Therapy: Modulators and Potentiators, edited by Gary K. Schwartz, 2005
Cancer Chemoprevention, Volume 1: Promising Cancer Chemopreventive Agents, edited by Gary J. Kelloff, Ernest T. Hawk, and Caroline C. Sigman, 2004
Proteasome Inhibitors in Cancer Therapy, edited by Julian Adams, 2004
Nucleic Acid Therapeutics in Cancer, edited by Alan M. Gewirtz, 2004
DNA Repair in Cancer Therapy, edited by Lawrence C. Panasci and Moulay A. Alaoui-Jamali, 2004
Hematopoietic Growth Factors in Oncology: Basic Science and Clinical Therapeutics, edited by George Morstyn, MaryAnn Foote, and Graham J. Lieschke, 2004
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics, edited by William D. Figg and Howard L. McLeod, 2004
Handbook of Cancer Vaccines, edited by Michael A. Morse, Timothy M. Clay, and Kim H. Lyerly, 2004
Drug Delivery Systems in Cancer Therapy, edited by Dennis M. Brown, 2003
Oncogene-Directed Therapies, edited by Janusz Rak, 2003
Chemoradiation in Cancer Therapy, edited by Hak Choy, 2003
Fluoropyrimidines in Cancer Therapy, edited by Youcef M. Rustum, 2003
Targets for Cancer Chemotherapy: Transcription Factors and Other Nuclear Proteins, edited by Nicholas B. La Thangue and Lan R. Bandara, 2002
Tumor Targeting in Cancer Therapy, edited by Michel Pagé, 2002
Hormone Therapy in Breast and Prostate Cancer, edited by V. Craig Jordan and Barrington J. A. Furr, 2002
Tumor Models in Cancer Research, edited by Beverly A. Teicher, 2002
Tumor Suppressor Genes in Human Cancer, edited by David E. Fisher, 2001
Farnesyltransferase Inhibitors in Cancer, edited by Saïd M. Sebti and Andrew D. Hamilton, 2001
Platinum-Based Drugs in Cancer Therapy, edited by Lloyd R. Kelland and Nicholas P. Farrell, 2000
Apoptosis and Cancer Chemotherapy, edited by John A. Hickman and Caroline Dive, 1999
Recent advances in genomic and proteomic research into the molecular biology and biochemistry of cancer have revealed critical differences between normal and malignant tissues. Exploiting these differences, investigators from academia as well as the biotechnology and pharmaceutical industries have underscored key processes that regulate the growth and progression of cancers. Bioinformatic integration of these findings within an evolving systems biology network has spearheaded the development of specific and selective therapeutics that target differentially expressed markers of pathways implicated in cellular proliferation, differentiation, metastasis, evasion of immune surveillance, angiogenesis, and apoptosis. These approaches have resulted in a modest clinical survival benefit for certain cancers, yet many challenges remain, including combinatorial approaches with standard cytotoxic chemotherapy as well as antiangiogenic therapy.

The main objective of The Oncogenomics Handbook is to provide a comprehensive update of a variety of perspectives and the consequential approaches toward advancing cancer therapy. Most importantly, we hope to paint with broad strokes and representative examples the drug development process as a network whose components are intimately linked with one another and progressing together from the discovered target to the ultimate therapeutic product. As an accurate reflection of the state of the art, we have brought together outstanding translational research from both academia and the biotechnology sectors.

This handbook is organized into seven parts. The first begins with a discussion of genomic databases and presents examples of elegant approaches to discover oncological targets. The second part expands the understanding of the tractable genome from the gene and transcript to the realm of proteomics that provides an understanding at the level of protein biochemistry. The third and fourth parts move from the chemical realm to that of the living cell and ultimately animal modeling, where preclinical cell biologists and animal pharmacologists translate proof of concept models toward clinical development. The fifth part of the book provides an overview of clinical diagnostics, bioanalytics, and biomarkers, as well as the importance of these molecules to therapeutic outcome. The sixth part of the book is divided into three sections that present antiangiogenic, supportive, immunomodulatory, and tumor-targeted approaches to cancer therapy. The final part of the book provides a systems biology bioinformatics overview of strategies and initiatives leading the post-genomic era. Although many of these approaches are in different stages of clinical development and present examples of future cancer therapies, several have resulted in some clinical benefit for certain cancers. Although many challenges are presented, optimism surrounds the potential use of combination therapies using approved cytotoxics, novel small molecule inhibitors, antiangiogenics, monoclonal antibodies, vaccines, immunomodulatory drugs, and radiation therapy. As always, much work needs to be done.

The Handbook of Oncogenomics should prove useful as a text for advanced undergraduate or graduate courses that focus on the drug development process from discovery to clinic. It may also be used as a complementary text for scientific professionals seeking to expand their knowledge of the rapidly progressing fields of cancer research. Finally, although many of the sections of the book focus on scientific professionals, the book covers concepts and issues appropriate to a wide range of professionals, including those involved in consulting services and marketing related to the specialized knowledge contained herein.

William J. LaRochelle, PhD
Richard A. Shimkets, PhD
CONTENTS

Preface ... v
Contributors .. xi
Color Plates ... xvii

PART I. GENOMICS, CANCER TARGETS, TRANSCRIPTOMICS, AND GENE EXPRESSION ANALYSIS

1 Genomic Resources for Cancer Biologists
 Xuefeng Bruce Ling, Gene Cutler, and Timothy Hoey ... 3
2 Cancer Drug Target Identification by SAGE, LongSAGE, and Digital Karyotyping
 Heiko Hermeking ... 19
3 Identification of Novel Cancer Target Antigens Utilizing EST and Genome Sequence Databases
 Tapan K. Bera, Kristi A. Egland, B. K. Lee, and Ira Pastan 31
4 Tree-Based Cancer Classification and Diagnosis Using Gene Expression Data
 Heping Zhang ... 43
5 From FISH to Proteomics: *A Molecular Brush to Define Antitumor Drug Action*
 Balanehru Subramanian, Alexander Nakeff, and Frederick Valeriote 53
6 Gene Program Signatures for Papillomavirus E2-Mediated Senescence in Cervical Cancer Cells: *Finding the Points of No Return*
 Sarah S. Williams, Bruce J. Aronow, and Susanne I. Wells 69

PART II. ADVANCES IN PROTEOMIC AND ENZYMATIC CANCER-PROFILING TECHNOLOGIES

7 Mass-Spectrometry-Based Proteomics for Cancer Biology
 Chen Xu and John R. Yates III .. 91
8 Chemical Proteomics in Drug Development
 Douglas A. Jeffery, Amos Baruch, and Matthew Bogyo ... 109
9 Proteomics-Based Anticancer Drug Discovery
 K. K. Jain .. 123
10 Cancer Metabolic Phenotype: *Exploiting the Cancer Metabolome in Drug Discovery*
 John R. Griffiths and Marion Stubbs ... 135
11 Focusing Target Discovery and Validation Through Proteogenomics and Molecular Imaging
 Lucy A. Carver and Jan E. Schnitzer .. 151

PART III. CANCER TARGET VALIDATION: CELLULAR APPROACHES

12 RNA Interference: RNAid for Future Therapeutics?
 Mustapha Diallo, Katja Schmitz, and Ute Schepers .. 167
13 Image-Based Assays of Cellular Phenotype for Drug Target Discovery and Validation
 Kris F. Sachsenmeier and Jonathan A. Terrett .. 195
14 Targeting Inducible Chemotherapy Resistance Mechanisms in Colon Cancer
 David Ljungman and James C. Cusack, Jr. ... 209
15 Targeting Apoptosis Pathways for Cancer Therapy
 Bharvin K. R. Patel .. 229

PART IV. CANCER TARGET VALIDATION: ANIMAL APPROACHES
16 Genetically Engineered Mouse Models of Human Cancer for Drug Discovery and Development
 Rónán C. O’Hagan, Min Wu, William M. Rideout III, Yinghui Zhou, and Joerg Heyer .. 247
17 Unraveling the Complexity of Oncogenesis Through In Vivo Optical Imaging
 Pamela Reilly Contag .. 263
18 Innovative Strategies for Improving Engineered Mouse Models of Human Cancer for Preclinical Development
 Jeffrey J. Martino and Suzie Chen .. 275
19 Use of Adenovirus-Mediated Gene Transfer to Facilitate Biological Annotation of Novel Genes
 Jeff L. Ellsworth, Andrew Feldhaus, and Steven D. Hughes 287
20 Cancer Biology and Transgenic Technology in the Mouse: Bridging the Functional Gap
 Cindy E. McKinney and Cooduvalli S. Shashikant 303
21 Homology-Based Genomic Mining of Growth Factors Implicated in Neoplasia and Nephritides: PDGF-D
 Gary C. Starling, William J. LaRochelle, and Gulshan Ara 323

PART V. CANCER PROGNOSTICS, DIAGNOSTICS, AND BIOMARKERS
22 Cancer Pharmacogenomics: Predicting Drug Response in the Genomic Era
 Brian Z. Ring and Huijun Z. Ring .. 339
23 Diagnosis and Treatment of Malignancies Using Gene Expression Profiling
 Jimmy C. Sung, Alice Y. Lee, and Timothy J. Yeatman 359
24 Implications of Epigenetics for Early Cancer Diagnosis and Prevention
 Mukes Verma and Sudhir Srivastava .. 365
25 Novel Molecular and Genetic Prognostic Biomarkers in Prostate Cancer
 Arnab Chakravarti and Gary Guotang Zhai .. 377
26 PSA in Prostate Cancer Diagnosis
 Pradip Datta ... 393
27 Tumor Targets and Biomarkers in Renal Cell Carcinoma
 Ivar Bleumer and Peter F. A. Mulders .. 403
PART VI. EMERGING APPROACHES TO CANCER THERAPY

VI-A. TARGETING THE VASCULATURE

28 Tumor Vasculature as a Target for Cancer Therapy
Grzegorz Korpanty, Xianming Huang, and Rolf A. Brekken ... 415

29 Targeting the VEGF/VEGFR Axis for Cancer Therapy
Frank A. Scappaticci ... 429

30 Inhibiting Cancer Angiogenesis With Molecular Therapy
Qixin Leng and A. James Mixson ... 441

VI-B. SUPPORTIVE AND ADJUVANT THERAPIES

31 Development of Palifermin (rHuKGF) for Mucositis
Ping Wei and Catherine L. Farrell .. 459

32 Immune Modulation: The B7 Family Cosignaling Molecules as Emerging Targets for Enhancing Cancer Therapy
Sheng Yao and Lieping Chen .. 475

VI-C. TUMOR-TARGETED THERAPIES

33 Proteasome Inhibition and Its Clinical Application in Solid Tumors
David J. Park and Heinz-Josef Lenz .. 493

34 Tumor Necrosis Factor Family of Ligands and Receptors in Cancer Therapy
Anas Younes and Andrea Cerutti ... 509

35 Small-Molecule Receptor Tyrosine Kinase Inhibitors in Targeted Cancer Therapy
Carlos García-Echeverría ... 531

36 The mTOR Pathway and Its Inhibitors
John B. Easton and Peter J. Houghton ... 553

37 Cyclo-Oxygenase-2 Enzyme and Its Inhibition in Tumor Growth and Therapy
Zhongxing Liao, Uma Raju, Kathryn A. Mason, and Luka Milas .. 571

38 Understanding Prostate-Specific Membrane Antigen and Its Implication in Prostate Cancer
Arundhati Ghosh and Warren D. W. Heston ... 597

39 Development of a Radiolabeled Monoclonal Antibody to Prostate-Specific Membrane Antigen
Stanley J. Goldsmith, Shankar Vallabhajosula, Matthew I. Milowsky, David M. Nanus, Lale Kostakoglu, and Neil H. Bander ... 617

40 Monoclonal Antibody Strategies for Targeting HER2
Joan Albanell, Jeffrey S. Ross, Linda Pronk, and Pere Gascon .. 627

41 From XenoMouse® Technology to Panitumumab (ABX-EGF)
Xiaodong Yang, Lorin Roskos, C. Geoffrey Davis, and Gisela Schwab 647
42 Development and Evaluation of Cancer Therapeutic Agents
 Targeting TRAIL Receptor 1 and 2
 Robin C. Humphreys .. 659
43 Clinical Studies of Immunotherapy With Rituximab (Rituxan®)
 and Radioimmunotherapy With Ibritumomab Tiuxetan (Zevalin®)
 in B-Cell Lymphoid Malignancies
 Arturo Molina .. 677

PART VII. INFORMATICS STRATEGIES AND INITIATIVES

44 Informatics Strategies and Initiatives Used in Cancer Research
 Martin D. Leach ... 713
 Index ... 731
CONTRIBUTORS

JOAN ALBANELL, MD • Medical Oncology Department, ICMHO & IDIBAPS, Hospital Clinic i Provincial de Barcelona, Barcelona, Spain

GULSHAN ARA, PhD • Oncology, Group Leader, Preclinical Development, CuraGen Corporation, Branford, CT

BRUCE J. ARONOW, PhD • Division of Pediatric Informatics, Children’s Hospital Medical Center and, The University of Cincinnati College of Medicine, Cincinnati, OH

NEIL H. BANDER, MD • Department of Urology, Department of Medicine, Weill Medical College of Cornell University, New York, NY

AMOS BARUCH, PhD • Celera Genomics, South San Francisco, CA

TAPAN K. BERA, PhD • Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland

IVAR BLEUMER, MD • Department of Urology, University Hospital St Radboud, Nijmegen, The Netherlands

MATTHEW BOGYO, PhD • Department of Pathology, Stanford University School of Medicine, Stanford, CA

ROLF A. BREKKEN, PhD • Hamon Center for Therapeutic Oncology Research, Department of Surgery, UT-Southwestern Medical Center, Dallas, TX

LUCY A. CARVER, PhD • Sidney Kimmel Cancer Center, San Diego, CA

ANDREA CERUTTI, MD • Department of Lymphoma and Myeloma, Unit 429, The University of Texas, M. D. Anderson Cancer Center, Houston, TX

ARNAB CHAKRAVARTI, MD • Massachusetts General Hospital, Department of Radiation Oncology, Boston, MA

LIEPING CHEN, MD, PhD • The Johns Hopkins University School of Medicine, Baltimore, MD

SUZIE CHEN, PhD • Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ

PAMELA REILLY CONTAG, PhD • President and Co-CEO, Xenogen Corporation, Alameda, CA

JAMES C. CUSACK, JR., MD • Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA

GENE CUTLER, PhD • Tularik Inc., South San Francisco, CA

PRADIP DATTA, PhD, DABCC • Bayer Diagnostics, Tarrytown, NY

C. GEOFFREY DAVIS, PhD • Abgenix Inc., Fremont CA

MUSTAPHA DALLO, Dipl.Biol. • Kekule Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany

JOHN B. EASTON, PhD • Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, TN

KRISTI A. EGGLESTON, PhD • Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
JEFF L. ELLSWORTH, PhD • Department of Autoimmunity and Inflammation, ZymoGenetics Inc., Seattle, WA

CATHERINE L. FARRELL, PhD • Global Operations Planning, Amgen Inc., Thousand Oaks, CA

ANDREW FELDHAUS, PhD • Departments of Genetics, ZymoGenetics Inc., Seattle, WA

CARLOS GARCÍA-ECHEVERRÍA, PhD • Global Discovery Chemistry Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland

PERE GASCON, MD • Professor and Director, Division of Medical Oncology, ICMHO and IDIBAPS, Hospital Clínico i Provincial de Barcelona, Barcelona, Spain

ARUNDHATI GHOSH, PhD • George M. O’Brien Center for Urology Research, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH

STANLEY J. GOLDSMITH, MD • Professor of Radiology and Medicine, Division of Nuclear Medicine, Department of Radiology, Weill Medical College of Cornell University, New York, NY

JOHN R. GRIFFITHS, MB BS, DPhil • CR UK Biomedical MR Research Group, Department of Basic Medical Sciences, St. George’s Hospital Medical School, London, UK

HEIKO HERMENING, PhD • Head of the Molecular Oncology Group, Max-Planck-Institute of Biochemistry, Martinsried/Munich, Germany

WARREN D. W. HESTON, PhD • George M. O’Brien Center for Urology Research, Department of Cancer Biology, Lerner Research Institute, and Glickman Urological Institute, Cleveland Clinic Foundation. Cleveland, OH

JOERG HEYER, PhD • Department of Model Development, GenPath Pharmaceuticals Inc., Cambridge, MA

TIMOTHY HOEY, PhD • Director, Biology Department, Tularik Inc., South San Francisco CA

PETER J. HOUGHTON, PhD • Department Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, TN

XIANMING HUANG, PhD • Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT-Southwestern Medical Center, Dallas, TX

STEVEN D. HUGHES, PhD • PreClinical Development, ZymoGenetics Inc., Seattle, WA

ROBIN C. HUMPHREYS, PhD • Antibody Development and Discovery, Human Genome Sciences, Rockville, MD

K. K. JAIN, MD, FRACS, FFPM • Chief Executive Officer, Jain PharmaBiotech, Basel, Switzerland

DOUGLAS A JEFFERY, PhD • Celera Genomics, South San Francisco, CA

GRZEGORZ KORPANTY, MD • Hamon Center for Therapeutic Oncology Research, Department of Surgery, UT-Southwestern Medical Center, Dallas, TX

LALE KOSTAKOGLU, MD • Division of Nuclear Medicine, Department of Radiology, Weill Medical College of Cornell University, New York, NY

WILLIAM J. LAROCHELLE, PhD • Head of Oncology, Preclinical Development, CuraGen Corporation, Branford, CT

MARTIN LEACH, PhD • Vice President of Informatics, CuraGen Corporation, Branford, CT

ALICE Y. LEE, MS • H. Lee Moffitt Cancer Center, Tampa, FL

B. K. LEE, PhD • Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
Contributors

QIXIN LENG, PhD • Department of Pathology, University of Maryland Baltimore, Baltimore, MD

HEINZ-JOSEF LENZ, MD, FACP • Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA

ZHONGXING LIAO, MD • Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX

XUEFENG BRUCE LING, PhD • Tularik Inc., South San Francisco, CA

DAVID LJUNGMAN, MD • Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA

JEFFREY J. MARTINO • Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ

KATHRYN A. MASON, MSc • Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX

CINDY E. MCKINNEY, PhD • Department of Animal Sciences, The Pennsylvania State University, University Park, PA

LUKA MILAS, MD, PhD • Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX

MATTHEW I. MILOWSKY, MD • Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY

A. JAMES MIXSON, MD • Department of Pathology, University of Maryland Baltimore, Baltimore, MD

ARTURO MOLINA, MD • Medical Affairs Oncology/Hematology, Biogen Idec, San Diego, CA

PETER F. A. MULDERS, MD, PhD • Department of Urology, University Hospital St Radboud, The Netherlands

ALEXANDER NAKEFF, PhD • Drug Discovery and Development Program, Henry Ford Health System, Detroit, MI

DAVID M. NANUS, MD • Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY

RÓNÁN C. O’HAGAN • Department of Target Validation, GenPath Pharmaceuticals Inc., Cambridge, MA

DAVID J. PARK, MD • Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA

IRA PASTAN, MD • Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD

BHARVIN K. R. PATEL, PhD • Principal Research Scientist, Cancer Research, Eli Lilly and Company, Indianapolis, IN

LINDA PRONK, MD • Division Pharma, F. Hoffmann-La Roche, Basel, Switzerland

UMA RAJU, PhD • Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX

WILLIAM M. RIDGEOUT III, PhD • Scientist, Department of Model Development, GenPath Pharmaceuticals Inc., Cambridge, MA

BRIAN Z. RING, PhD • Applied Genomics Inc., Sunnyvale, CA
HUIJUN Z. RING, PhD • ABMG, Molecular Genetics Program Manager, SRI International, Menlo Park, CA

LORIN ROSKOS, PhD • Abgenix Inc., Fremont CA

JEFFREY S. ROSS, MD • Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY; Division of Molecular Medicine, Millennium Pharmaceuticals Inc., Cambridge, MA

KRIS F. SACHSENMEIER, PhD • Automated Cell Inc., Pittsburgh, PA

FRANK A. SCAPPATITCCI, MD, PhD • Genentech Inc., South San Francisco, CA; University of California Davis Cancer Center, Davis, CA

KATIA SCHMITZ, PhD • Kekule Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany

UTE SCHEPERS, PhD • Kekule Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany

JAN E. SCHNITZER, MD • Vascular Biology and Angiogenesis Program, Sidney Kimmel Cancer Center, San Diego, CA

GISELA SCHWAB, MD • Abgenix Inc., Fremont CA

COODUVALLI S. SHASHIKANT, PhD • Department of Animal Sciences, The Pennsylvania State University, University Park, PA

RICHARD SHIMKETS, PhD • CuraGen Corporation, Branford, CT

SUDHIR SRIVASTAVA, PhD • Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD

GARY C. STARLING, PhD • Inflammation, CuraGen Corporation, Branford, CT

MARION STUBBS, DPhil • CR UK Biomedical MR Research Group, Department of Basic Medical Sciences, St. George’s Hospital Medical School, London, UK

BALANEHRU SUBRAMANIAN, PhD • Drug Discovery and Development Program, Henry Ford Health System, Detroit, MI

JIMMY C. SUNG, MD, JD • Department of Surgery, H. Lee Moffitt Cancer Center, Tampa, FL

JONATHAN A. TERRITT, PhD • CellTech, The Quadrant, Abingdon, United Kingdom

FREDERICK VALERIOTE, PhD • Drug Discovery and Development Program, Henry Ford Health System, Detroit, MI

SHANKAR VALLABHAJOSULA, PhD • Division of Nuclear Medicine, Department of Radiology, Weill Medical College of Cornell University, New York, NY

MUKEH VERMA, PhD • Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD

PING WEI, PhD • Department of Hematology, Amgen Inc., Thousand Oaks, CA

SUSANNE I. WELLS, PhD • Division of Hematology/Oncology, Children’s Hospital Medical Center, The University of Cincinnati College of Medicine, Cincinnati, OH

SARAH S. WILLIAMS • Division of Pediatric Informatics, Children’s Hospital Medical Center, The University of Cincinnati College of Medicine, Cincinnati, OH

MIN WU, PhD • Department of Model Development, GenPath Pharmaceuticals Inc., Cambridge, MA
Contributors

CHEN XU, PhD • Department of Cell Biology, The Scripps Research Institute, LaJolla, CA
XIAODONG YANG, MD, PhD • Abgenix Inc., Fremont CA
SHENG YAO, PhD • The Johns Hopkins University School of Medicine, Baltimore, MD
JOHN R. YATES III, PhD • Department of Cell Biology, The Scripps Research Institute,
LaJolla, CA
TIMOTHY J. YEATMAN, MD • Clinical Investigations, H. Lee Moffitt Cancer Center, Tampa, FL
ANAS YOUNES, MD • Department of Lymphoma and Myeloma, The University
of Texas, M. D. Anderson Cancer Center, Houston, TX
GARY GUOTANG ZHAI, PhD • Department of Radiation Oncology, Massachusetts General
Hospital, Boston, MA
HEPING ZHANG, PhD • Department of Epidemiology and Public Health, Yale University School
of Medicine, New Haven, CT
YINGHUI ZHOU, PhD • Department of Model Development, GenPath Pharmaceuticals Inc.,
Cambridge, MA
Color Plates 1–4 follow p. 78 and 5–12 follow p. 302.

Color Plate 1. *Fig. 2, Chapter 2:* Summary of the Digital Karyotyping procedure. (See full caption on p. 22 and discussion on p. 23. With permission from *PNAS*.)

Fig.1A, Chapter 3: Schematic description of ESTs from different tissue libraries and their corresponding clusters. (See full caption on p. 34 and discussion on p. 32.)

Color Plate 2. *Fig. 3, Chapter 3:* Localization of *NGEP* mRNA in epithelial cells of prostate tissues. (See full caption on p. 36 and discussion on pp. 34–35).

Color Plate 3. *Fig. 1, Chapter 6:* A hierarchical tree of senescence associated transcriptionally regulated genes. (See full caption on p. 76 and discussion on p. 75.)

Color Plate 4. *Fig. 2, Chapter 6:* K-Means cluster analysis of the most significantly regulated subset of E2 responsive genes. (See full caption on p. 77 and discussion on p. 75.)

Color Plate 5. *Fig. 5, Chapter 13:* Data display from phenotypic assay of candidate drug target. (See complete caption on p. 204 and discussion on p. 203.)

Color Plate 6. *Fig. 1, Chapter 16:* Regression of tumors after deinduction. (See full caption and discussion on p. 250.)

Fig. 2, Chapter 16: Reconstitution of mammary gland by implant of epithelium cells. (See full caption and discussion on p. 253.)

Color Plate 7. *Fig. 1, Chapter 17:* p53-RE luciferase induction with doxorubicin in vivo. (See discussion on p. 269.)

Fig. 3, Chapter 17: Inducible Vegfr2-luc during tumor development. (See full caption on p. 272 and discussion on pp. 270–271.)

Color Plate 8. *Fig. 1, Chapter 19:* Expression of GFP in mouse liver following infection with *Av-Gfp*. (See full caption on p. 292 and discussion on p. 291.)

Fig. 3, Chapter 19: Cellular change in mouse liver treated with adenovirus encoding different forms of PDGF. (See full caption and discussion on p. 294.)

Color Plate 9. *Fig. 4A–H, Chapter 19:* Histology of mouse pinnae transduced with adenovirus expressing *Fgf18* (continued). (See full caption on p. 299 and discussion on pp. 296–297.)

Color Plate 10. *Fig. 4I–L (continued), Chapter 19:* Histology of mouse pinnae transduced with adenovirus expressing *Fgf18*. (See full caption on p. 299 and discussion on pp. 296–297.)

Color Plate 11. *Fig. 2, Chapter 31:* Effect of KGF on small intestine of 5-FU-treated mice. (See full caption on p. 464 and discussion on pp. 462–463.)

Color Plate 12. *Fig. 3, Chapter 38:* Assay of dileucine sorting signal, one of two major classes that mediate internalization of membrane proteins. (See full caption on pp. 605 and discussion on pp. 601–603.)