Surgical Management
of Congestive Heart Failure
CONTEMPORARY CARDIOLOGY

CHRISTOPHER P. CANNON, MD

SERIES EDITOR

Surgical Management of Congestive Heart Failure, edited by James C. Fang, MD and Gregory S. Couper, MD, 2005

Interventional Cardiology: Percutaneous Noncoronary Intervention, edited by Howard C. Herrmann, MD, 2005

Principles of Molecular Cardiology, edited by Marschall S. Runge, MD, and Cam Patterson, MD, 2005

Heart Disease Diagnosis and Therapy: A Practical Approach, Second Edition, edited by Gabriel M. Khan, MD, FRCP, FRCP (C), FACC, 2005

Cardiovascular Genomics: Gene Mining for Pharmacogenomics and Gene Therapy, edited by Mohan K. Raizada, PhD, Julian F. R. Paton, PhD, Michael J. Katovich, PhD, and Sergey Kasparov, MD, PhD, 2005

Cardiopulmonary Resuscitation, edited by Joseph P. Ornato, MD, FACP, FACC, FACEP and Mary Ann Peberdy, MD, FACC, 2005

CT of the Heart: Principles and Applications, edited by U. Joseph Schoepf, MD, 2005

Cardiac Transplantation: The Columbia University Medical Center/New York-Presbyterian Hospital Manual, edited by Niloo M. Edwards, MD, Jonathan M. Chen, MD, and Pamela A. Mazzeo, 2004

Heart Disease and Erectile Dysfunction, edited by Robert A. Kloner, MD, PhD, 2004

Coronary Disease in Women: Evidence-Based Diagnosis and Treatment, edited by Leslee J. Shaw, PhD and Rita F. Redberg, MD, FACC, 2004

Complementary and Alternate Cardiovascular Medicine, edited by Richard A. Stein, MD and Mehmet C. Oz, MD, 2004

Nuclear Cardiology, The Basics: How to Set Up and Maintain a Laboratory, by Frans J. Th. Wackers, MD, PhD, Wendy Bruni, BS, CNMT, and Barry L. Zaret, MD, 2004

Cardiovascular Health Care Economics, edited by William S. Weintraub, MD, 2003

Heart Failure: A Clinician's Guide to Ambulatory Diagnosis and Treatment, edited by Mariell L. Jessup, MD and Evan Loh, MD, 2003

Peripheral Arterial Disease: Diagnosis and Treatment, edited by Jay D. Coffman, MD and Robert T. Eberhardt, MD, 2003
FOREWORD

There are 4 to 5 million people with heart failure in the United States alone. Included in this diagnosis are patients who have decreased left ventricular contractility and ejection fraction but no symptoms, and patients who have “preserved” ejection fraction, even supernormal in hypertrophic cardiomyopathy, in whom an impairment of ventricular filling leads to exercise intolerance and elevated venous pressures. However, the majority of patients currently diagnosed have left ventricular ejection fraction 20–40% and mild to moderate symptoms of heart failure.

Medical Therapy for Heart Failure

For these patients, there have been major advances in pharmacologic therapy since the late 1980s, since the demonstration that vasodilator therapy improves outcome in heart failure. Subsequent trials showed that inhibition of the renin-angiotensin system enzyme bestows additional benefit, decreasing recurrent ischemic events and improving outcomes for patients with diabetes, as well as decreasing the left ventricular dilation, or “remodeling” that characterizes heart failure progression. Even more striking for survival benefit has been the addition of β-adrenergic blocking agents. The complexity of initiation and uptitration of β-blocking agents has highlighted the chasm between the recommended therapeutic regimen and the limited experience and resources available to establish and maintain that regimen in the community. The true impact of the therapies proven in clinical trials has not yet been realized, but may be less than anticipated when those therapies are provided without clinical trial-level surveillance to populations on average 10 years older and with more co-morbidities.

Although inhibition of the renin-angiotensin system and β-receptors of the sympathetic nervous system have provided the cornerstones of our pharmacologic therapy, it is not clear whether more benefit can be derived from further neurohormonal modulation. Trials of central sympatholysis, angiotensin receptor blockers, cytokine inhibitors, and endothelin antagonists may even be deleterious on top of the known therapies. Furthermore, as heart failure progresses, an increasing proportion of patients are unable to tolerate reflex inhibition, first showing intolerance to β-blockers, then to angiotensin-converting enzyme (ACE) inhibitors. Symptoms of con-
gestion can be relieved at most stages of heart failure until close to the end stage, when the cardiorenal syndrome often becomes limiting before there is other evidence of refractory low output states. Oral inotropic therapy to improve cardiac output was abandoned owing to a small but significant increase in mortality. Paradoxically, intravenous inotropic therapy is increasingly used to provide palliation at the end stage of heart failure. Expected survival is less than 50% at 6 months for patients who are dependent on chronic inotropic therapy.

Surgery for Heart Failure: Repair, Remodeling, and Replacement

Since medical therapy for heart failure has delayed but not prevented disease progression, there is increasing interest in more definitive therapy. Many previous surgical approaches were tried and subsequently abandoned, whereas transplantation became an accepted therapy without any controlled experiment. More recently, the template of the double-blind randomized clinical trial that has validated drug therapies has been superimposed with some awkwardness on investigation of procedures and devices. After initial feasibility has been shown, systematic performance and documentation of outcomes with a new therapy without randomization can provide conclusive evidence of lack of sufficient efficacy to merit a controlled trial, as with the commendable experience of the Cleveland Clinic with the left ventriculectomy procedure. For cardiomyo-plasty, the limited functional improvement observed was not sufficient to maintain enthusiasm for the courageously planned randomized trial, subsequently plagued with slow enrollment. For benefit, it remains possible that early experience carefully recorded with a new procedure could be sufficiently positive to constitute a “breakthrough” development, after which equipoise could not then be established for a randomized trial. More often, there are encouraging results that warrant further investigation with a prospective control arm. It should be recognized, however, that inability to provide an ethical double blind limits both patient enrollment and the interpretation of results for such trials. These limitations and the inherently greater cost and risk of surgical procedures mandate a higher bar of obvious benefit before acceptance of a new surgical procedure for heart failure.

Inherent in consideration of surgery for heart failure is the recognition that some patients are more likely to benefit than others. In this respect, the surgical approaches are already advanced beyond the medical approaches, which have been hindered by the assumption of homogeneity of the heart failure populations. In Surgical Management of
Congestive Heart Failure, multiple different procedures for heart failure are presented, together with careful description of the candidate populations for each. For procedures such as revascularization and valve repair or replacement, the benefit has been well established for some populations. The challenge here is to push the envelope to identify when such procedures may offer meaningful benefit for patients once considered to be “too late” in the stage of their disease. Other procedures under active investigation for advanced stages of disease, such as ventricular reconstruction or external constraint devices, may eventually be introduced earlier in the course of disease to limit disease progression. At the end of the road, the goal of effective cardiac replacement looms large. Cardiac transplantation at this time remains the greatest success story for truly end-stage disease, with more than 50,000 patients now transplanted worldwide. The breadth of its impact far exceeds the actual recipients, however, because the lure of cardiac transplantation called attention to the newly defined population of advanced heart failure, whereas the restricted donor supply inspired the development of better heart failure management and of new strategies for replacement, such as mechanical cardiac devices and xenotransplantation.

The Right Therapy for Each Patient

Heart failure has legitimately moved into a field of its own. After a barren period in the mid-1990s when medical therapy was ACE inhibitors and surgical therapy was transplantation, better understanding of the physiology of heart failure has yielded a cornucopia of potential options. At the same time, survival alone is no longer the only count of success. The implanted defibrillators have decreased the cloud of sudden death, and biventricular pacing has shown larger improvement in symptoms than seen with neurohormonal therapy, but issues of functional capacity and quality of life are increasingly relevant. Heart failure is not one disease, and the heart failure patient is not a composite of averages. The individual patient has developed heart failure uniquely through injury and adaptation, suffers the limitations of heart failure uniquely, and seeks therapy with unique expectations regarding length and quality of survival, tempered by risk-taking preferences that can be honored but not predicted. This book seeks to encompass both the large studies and the vital experiences. Improved outcome in heart failure must be calibrated and tracked for populations, but will ultimately be provided by individual physicians for individual patients.

Lynne W. Stevenson, MD
Congestive heart failure (CHF) is one of the leading causes of hospitalization in the United States and is associated with significant morbidity and mortality. Pharmacologic therapies have had a significant impact on the disease, but have been primarily limited to angiotensin-converting enzyme inhibitors and β-blockers. Inotropic agents and other vasodilators are available and effective for the acute management of heart failure, but are associated with poor long-term outcomes. Until recently, few surgical therapies were available for severe end-stage CHF short of cardiac transplantation. With the advent of better surgical techniques and improved pre- and postoperative medical management, traditional surgeries for severe left ventricular dysfunction can now be performed with reasonable success. Furthermore, the advances in mechanical circulatory support devices have made the concept of bridging to transplant and bridging to recovery a reality. Even permanent mechanical circulatory support is now available. Finally, other novel approaches using various devices are constantly being investigated.

The surgical options for the end-stage heart failure patient are now numerous and effective. The aim of Surgical Management of Congestive Heart Failure is to bring together the latest clinical, scientific, and investigational surgical approaches to improve the lives of this challenging group of patients. The book is written by leading authorities in both cardiovascular surgery and cardiology as the management of these patients has necessitated an increasingly multidisciplinary approach. We hope that the readers will get a broad yet in-depth understanding of the options that can be offered to their patients and what the future holds for the surgical and device-oriented treatment of heart failure.

James C. Fang, MD

Gregory S. Couper, MD
CONTENTS

Foreword .. v
Preface ... ix
Contributors .. xiii

1 Recent Advances in Cardiac Allotransplantation 1
 John Adams Jarcho and James C. Fang

2 Surgical Revascularization in the Management of Heart Failure and Ischemic Left Ventricular Dysfunction ... 39
 Jeffrey J. Teuteberg and James C. Fang

3 Aortic Valve Surgery With Severe Left Ventricular Dysfunction ... 67
 Blasé A. Carabello

4 Mitral Valve Surgery With Severe Left Ventricular Dysfunction ... 79
 Vinay Badhwar and Steven F. Bolling

5 Tricuspid Valve Surgery in Right Heart Failure 97
 James P. Greelish, Bradley J. Phillips, James C. Fang, and John G. Byrne

6 Pacing in Heart Failure ... 123
 Uday N. Kumar, Teresa De Marco, and Leslie A. Saxon

7 Left Ventricular Assist Devices ... 155
 Paul L. DiGiorgi, Yoshifumi Naka, and Mehmet C. Oz

8 Left Ventricular Volume Reduction Surgery for Idiopathic Dilated Cardiomyopathy 191
 Richard Lee, Mohammed A. Quader, Katherine J. Hoercher, and Patrick M. McCarthy
9 Surgical Management of Hypertrophic Cardiomyopathy ... 203

10 Dynamic Cardiomyoplasty and New Prosthetic LV Girdling Devices .. 225
Michael A. Acker

11 Xenotransplantation ... 239
Joren C. Madsen and Ruediger Hoerbelt

12 Left Ventricular Reconstruction for Ischemic Heart Failure ... 279
Vincent Dor

13 The Total Artificial Heart in the Surgical Management of Congestive Heart Failure 301
Jack G. Copeland, Francisco A. Arabia, and Richard G. Smith

Index ... 317
CONTRIBUTORS

MICHAEL A. ACKER, MD, Division of Cardiothoracic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
FRANCISCO A. ARABIA, MD, Department of Surgery, Sarver Heart Center, University of Arizona College of Medicine, Tucson, AZ
VINAY BADHWAR, MD, Section of Cardiac Surgery, University of Michigan, Ann Arbor, MI
STEVEN F. BOLLING, MD, Section of Cardiac Surgery, University of Michigan, Ann Arbor, MI
JOHN G. BYRNE, MD, Division of Cardiac Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
BLASE A. CARABELLO, MD, FACC, Department of Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, TX
JACK G. COPELAND, MD, Section of Cardiovascular and Thoracic Surgery, Department of Surgery, Sarver Heart Center, University of Arizona College of Medicine, Tucson, AZ
GREGORY A. COUPER, MD, Division of Cardiac Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
TERESA DE MARCO, MD, Division of Cardiology, University of California at San Francisco, San Francisco, CA
PAUL L. DIGIORGI, MD, Division of Cardiothoracic Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY
VINCENT DOR, MD, Cardio Thoracic Center of Monaco, Monaco
JAMES C. FANG, MD, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
JAMES P. GREELISH, MD, Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN
RUEDIGER HOERBELT, MD, Division of Cardiac Surgery and Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
KATHERINE J. HOERCHER, RN, George M. and Linda H. Kaufman Center for Heart Failure, Cleveland Clinic, Cleveland, OH
Contributors

JOHN ADAMS JARCHO, MD, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medicine School, Boston; and UpToDate Inc., Wellesley, MA

UDAY N. KUMAR, MD, Department of Medicine, University of California, San Francisco, CA

RICHARD LEE, MD, MBA, Division of Cardiothoracic Surgery, Department of Surgery, St. Louis University School of Medicine, St. Louis, MO

PATRICK M. MCCARTHY, MD, Cardiovascular Institute, Northwestern University Medical School, Chicago, IL

JOREN C. MADSEN, MD, DPhil, Division of Cardiac Surgery and Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA

YOSHIFUMI NAKA, MD, PhD, Division of Cardiothoracic Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY

MEHMET C. OZ, MD, Division of Cardiothoracic Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY

BRADLEY J. PHILLIPS, MD, Division of Cardiac Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

MOHAMMED A. QUADER, MD, Division of Cardiothoracic Surgery, Department of Surgery, Nebraska Heart Institute, Lincoln, NE

HARRY RAKOWSKI, MD, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada

ANTHONY C. RALPH-EDWARDS, MD, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada

LESLIE A. SAXON, MD, Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA

LEONARD SCHWARTZ, MD, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada

RICHARD G. SMITH, MSEE, CEE, Marshall Foundation Artificial Heart Program, University of Arizona Sarver Heart Center, Tucson, AZ

LYNNE W. STEVENSON, MD, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

JEFFREY J. TEUTEBERG, MD, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
E. DOUGLAS WIGLE, MD, Division of Cardiovascular Surgery, Department of Medicine, University of Toronto, Toronto, Ontario, Canada

WILLIAM G. WILLIAMS, MD, Division of Cardiovascular Surgery, Department of Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada