Epidermal Cells
Epidermal Cells

Methods and Protocols

Edited by

Kursad Turksen

Ottawa Health Research Institute,
Ottawa, Ontario, Canada
Preface

Since Howard Green and colleagues first successfully cultured and maintained epidermal cells in vitro more than two decades ago, our understanding of and ability to manipulate these cells have increased tremendously. Nevertheless, over the years there was, and still is in some circles, an almost mystical notion that epidermal cells are very difficult to work with. Although this may generally be true in comparison to fibroblasts, the field has made exceptional strides in making many methodologies accessible to this cell type. I, therefore, felt that the time was right to collect some of the powerful protocols covering such topics as different methods and models for culturing epidermal cells, enriching for very early epidermal progenitors, and studying epidermal cell commitment and differentiation both in vitro and in vivo. Epidermal Cells: Methods and Protocols is not meant to be a comprehensive collection of all possible protocols by which to manipulate epidermal cells, but instead is geared toward protocols that both experienced and novice researchers interested in epidermal biology should find invaluable and easily reproducible in their own labs. If I have achieved this, it is with the willingness of the very committed contributors to share their “hard-won” methodologies. I thank them all.

I would also like to take this opportunity to acknowledge Dr. Jane Aubin for being such a great mentor over many years, but most especially for instilling much enthusiasm and rigor into my own fledgling days of cell culture and differentiation. I similarly thank Dr. Elaine Fuchs for giving me the opportunity to “get down and dirty” with epidermal cells and mouse models to study them. Without their support and the opportunities they gave me, I would not have been able to grow in the scientific directions that I find so exciting.

It is also important to recognize Dr. John Walker, who has been continuously supportive of and helpful in the projects that I have picked. In addition, I would like to acknowledge the enthusiastic support of all at Humana Press who have helped, especially Craig Adams.

I am grateful to N. Urfe for stimulating discussions.

Finally, I would like to thank my great coworker, Tammy Troy. Her endless chipper and enthusiastic support and help have made it a pleasure to complete this book.

Kursad Turksen
Contents

Preface ... v
Contributors .. xi

PART I. KERATINOCYTE AND ORGAN CULTURES

1 Primary Mouse Keratinocyte Culture
 Annalisa Pirrone, Barbara Hager, and Philip Fleckman ... 3

2 Serial Cultivation of Primary Adult Murine Keratinocytes
 Richard P. Redvers and Pritinder Kaur .. 15

3 Keratinocyte Culture in the Absence of Substrate Attachment
 Monika Jost and Ulrich Rodeck ... 23

4 Application of Genetically Modified Feeder Cells for Culture of Keratinocytes
 Takashi Kameda and Toshihiro Sugiyama .. 29

5 Organ Culture of Developing Mouse Skin and Its Application for Molecular Mechanistic Studies of Morphogenesis
 Mariko Kashiwagi and Nam-ho Huh .. 39

6 Experimental Models to Analyze Differentiation Functions of Cultured Keratinocytes In Vitro and In Vivo
 Nicole Maas-Szabowski, Norbert E. Fusenig, and Hans-Jürgen Stark 47

7 In Vitro Fabrication of Engineered Human Skin
 Alexander Margulis, Weitian Zhang, and Jonathan A. Garlick .. 61

PART II. EPIDERMAL STEM CELLS

8 In Vivo Labeling and Analysis of Epidermal Stem Cells
 Wei-Yang Wu and Rebecca J. Morris ... 73

9 Method for the Harvest and Assay of In Vitro Clonogenic Keratinocytes Stem Cells From Mice
 Wei-Yang Wu and Rebecca J. Morris .. 79

10 FACS Enrichment of Human Keratinocyte Stem Cells
 Amy Li and Pritinder Kaur ... 87

11 Isolation, Characterization, and Culture of Epithelial Stem Cells
 Jackie R. Bickenbach .. 97

12 Keratin 19 as a Stem Cell Marker In Vivo and In Vitro
 Danielle Larouche, Cindy Hayward, Kristine Cuffley, and Lucie Germain 103

PART III. ANALYSIS OF EPIDERMAL DIFFERENTIATION

13 Immunolocalization in the Epidermis
 Tammy-Claire Troy, Ramtin Rahbar, Bilge Diker, and Kursad Turksen 113
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Epidermal Cell Analysis by RT-PCR</td>
<td>Tammy-Claire Troy, Robert Man-Kit Cheung, and Kursad Turksen</td>
</tr>
<tr>
<td>15</td>
<td>Whole-Mount Assays for Gene Induction and Barrier Formation in the Developing Epidermis</td>
<td>Carolyn Byrne and Matthew J. Hardman</td>
</tr>
<tr>
<td>16</td>
<td>Analysis of Early Epidermal Development in Zebrafish</td>
<td>Ashley E. Webb and David Kimelman</td>
</tr>
<tr>
<td>17</td>
<td>Analysis of E2F Factors During Epidermal Differentiation</td>
<td>Wing Y. Chang and Lina Dagnino</td>
</tr>
<tr>
<td>18</td>
<td>Analysis of HOX Homeodomain Proteins and Gene Transcripts in the Epidermis</td>
<td>László G. Kömüves and Corey Largman</td>
</tr>
<tr>
<td>19</td>
<td>Apoptosis in the Epidermis</td>
<td>Kiyofumi Yamanishi, Chun-Shen Shen, and Hitoshi Mizutani</td>
</tr>
<tr>
<td>20</td>
<td>Fate of Desmosomal Proteins in Apoptotic Epidermal Cells</td>
<td>Jörg Weiske and Otmar Huber</td>
</tr>
<tr>
<td>21</td>
<td>Analysis of Connexin 43 Expression on Keratinocytes Using Flow Cytometry</td>
<td>Maja Matic, Christopher Pullis, Marc G. Golightly and Sanford R. Simon</td>
</tr>
<tr>
<td>22</td>
<td>MMP-9 and TIMP-1 Assays in Keratinocyte Cultures</td>
<td>Takashi Kobayashi</td>
</tr>
<tr>
<td>23</td>
<td>Characterization of Epithelial Cells in the Hair Follicle With S100 Proteins</td>
<td>Kenji Kizawa and Mayumi Ito</td>
</tr>
<tr>
<td>24</td>
<td>Immunoelectron Microscopic Analysis of Cornified Cell Envelopes and Antigen Retrieval</td>
<td>Akemi Ishida-Yamamoto</td>
</tr>
<tr>
<td></td>
<td>PART IV. METHODS AND APPROACHES FOR THE ANALYSIS FOR EPIDERMAL FUNCTION</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Cell Kinetic Analysis in Artificial Skin Using Immunochemical Methods</td>
<td>Andrea Casasco, Antonia Icaro Cornaglia, Federica Riva, Marco Casasco, and Alberto Calligaro</td>
</tr>
<tr>
<td>26</td>
<td>Proliferation, Differentiation, and Inflammation in Normal and Hyperproliferative Skin Using Multiparameter Flow Cytometry</td>
<td>Piet E. J. van Erp</td>
</tr>
<tr>
<td>27</td>
<td>Fluorimetric DNA Assay of Cell Number</td>
<td>William R. Otto</td>
</tr>
<tr>
<td>28</td>
<td>Keratinocyte Transient Transfections</td>
<td>Anthony M. Flores and Brian J. Aneskievich</td>
</tr>
</tbody>
</table>
29 Tetracycline-Regulated Gene Expression in Epidermal Keratinocytes
 Richard B. Presland and Philip Fleckman ... 273

30 Gene Targeting by Oligonucleotides in Keratinocytes
 Olga Igoucheva and Kyonggeun Yoon .. 287

31 Promoter Analysis in the Human *SPRR* Gene Family
 David F. Fischer and Claude Backendorf .. 303

32 Stable Integration of Large PAC Constructs in Keratinocytes
 Sarah H. Williams and Alain Hovnanian ... 315

33 Targeted Somatic Mutagenesis in the Mouse Epidermis
 Daniel Metzger, Mei Li, and Pierre Chambon .. 329

34 Methods to Study Protein–Protein Interactions
 Jin-Jun Meng, Meghan Rojas, Willis Bacon, John T. Stickney, and Wallace Ip .. 341

35 Isolation of Recombinant Phage-Displayed Antibodies Recognizing Skin Keratinocytes
 Kim Bak Jensen and Peter Kristensen ... 359

36 Analysis of Tissue-Specific DNA Methylation During Development
 Jun Ohgane, Naka Hattori, and Kunio Shiota .. 371

37 Serial Analysis of Gene Expression in Human Keratinocytes and Epidermis
 Bastiaan J. H. Jansen, Gys de Jongh, Joost Schalkwijk, and Fred van Ruissen .. 383

38 Methods for Gene Expression Profiling in Dermatology Research Using DermArray® Nylon Filter DNA Microarrays
 Richard L. Davis, Jr., Rusla M. DuBreuil, Shanker P. Reddy, and Thomas P. Dooley ... 399

39 Two-Photon Fluorescence Imaging and Reactive Oxygen Species Detection Within the Epidermis
 Kerry M. Hanson and Robert M. Clegg .. 413

Part V. Transplantation and Gene Therapy

40 In Vivo Transplantation of Engineered Human Skin
 Shari Greenberg, Alexander Margulis, and Jonathan A. Garlick 425

41 Epidermis-Targeted Gene Transfer Using In Vivo Electroporation
 Hiroki Maruyama, Jun-Ichi Miyazaki, and Fumitake Gejyo 431

42 Gene and Stem Cell Therapy of the Hair Follicle
 Robert M. Hoffman ... 437

Index ... 449
Contributors

BRIAN J. ANESKIEVICH • Departments of Nutritional and Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT
CLAUDE BACKENDORF • Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden, The Netherlands
WILLIS BACON • Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH
JACKIE R. BICKENBACH • Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
CAROLYN BYRNE • Barts and The London Queen Mary School of Medicine and Dentistry, University of London, London, UK
ALBERTO CALLIGARO • Histology and Embryology Unit, Department of Experimental Medicine, University of Pavia, Pavia, Italy
ANDREA CASASCO • Histology and Embryology Unit, Department of Experimental Medicine, University of Pavia, Pavia, Italy
MARCO CASASCO • Histology and Embryology Unit, Department of Experimental Medicine, University of Pavia, Pavia, Italy
PIERRE CHAMBON • Institut Clinique de la Souris (ICS) and IGBMC, Illkirch, France
WING Y. CHANG • Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
ROBERT MAN-KIT CHEUNG • Ottawa Health Research Institute, Ottawa, Ontario, Canada
ROBERT M. CLEGG • Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL
ANTONIA ICAPO CORNAGLIA • Histology and Embryology Unit, Department of Experimental Medicine, University of Pavia, Pavia, Italy
KRISTINE CUFFLEY • Laboratoire de Recherche des Grands Brûlés/LOEX and Department of Surgery, Laval University, Québec, Québec, Canada
LINA DAGNINO • Departments of Physiology and Pharmacology and of Pediatrics, University of Western Ontario, London, Ontario, Canada
RICHARD L. DAVIS, JR. • NCR Division, Midwest Research Institute, Rockland, MD
GYS DE JONGH • Department of Dermatology, University Medical Center Nijmegen, Nijmegen, The Netherlands
BILGE DIKER • Ottawa Health Research Institute, Ottawa, Ontario, Canada
THOMAS P. DOOLEY • Integriderm Inc., Birmingham, AL
RUSLA M. DU BREUIL • Open Biosystems Inc., Huntsville, AL
DAVID F. FISCHER • Netherlands Institute for Brain Research, Amsterdam, The Netherlands
PHILIP FLECKMAN • Department of Medicine (Dermatology), University of Washington, Seattle, WA
ANTHONY M. FLORES • Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT
NORBERT E. FUSENIG • Division of Carcinogenesis and Differentiation, German Cancer Research Center, Heidelberg, Germany

JONATHAN A. GARLICK • Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine and Department of Anatomy and Cellular Biology, School of Medicine, Tufts University, Boston, MA

FUMITAKE GEIYO • Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

LUCIE GERMAIN • Laboratoire de Recherche des Grands Brûles/LOEX and Department of Surgery, Laval University, Québec, Québec, Canada

SHARI GREENBERG • Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine and Department of Anatomy and Cellular Biology, School of Medicine, Tufts University, Boston, MA

BARBARA HAGER • Department of Medicine (Dermatology), University of Washington, Seattle, WA

Kerry M. Hanson • Department of Chemistry, University of California, Riverside, CA

MATTHEW J. HARDMAN • School of Biological Sciences, University of Manchester, Manchester, UK

Naka Hattori • Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, University of Tokyo, Tokyo, Japan

CINDY HAYWARD • Laboratoire de Recherche des Grands Brûles/LOEX and Department of Surgery, Laval University, Québec, Québec, Canada

ROBERT M. HOFFMAN • AntiCancer Inc., San Diego, CA

ALAIN HOVNANIAN • INSERM CPTP-U563, Service de Génétique Médicale, CHU Purpan, Toulouse, France

OTMAR HUBER • Charité-Medical Universities Berlin, Campus Benjamin Franklin, Institute of Clinical Chemistry and Pathobiochemistry, Berlin, Germany.

NAM-HO HUH • Department of Cell Biology, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan

OLGA IGOUCHEVA • Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA

WALLACE IP • Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH

AKEMI ISHIDA-YAMAMOTO • Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan

MAYUMI ITO • Basic Research Laboratory, Kanebo Ltd., Odawara, Japan

BASTIAAN J. H. JANSEN • Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands

KIM BAK JENSEN • Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
Contributors

GYS DE JONGH • Department of Dermatology, University Medical Center Nijmegen, Nijmegen, The Netherlands

MONIKA JOST • SymbioTec GmbH, Saarbrücken, Germany

TAKASHI KAMEDA • Department of Biochemistry, Akita University, School of Medicine, Akita, Japan

MARIKO KASHIWAGI • Institute of Molecular Oncology, Showa University, Tokyo, Japan

PRITTINDER KAUR • Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, East Melbourne, Victoria, Australia

DAVID KIMELMAN • Department of Biochemistry, University of Washington, Seattle

KENJI KIZAWA • Basic Research Laboratory, Kanebo Ltd, Odawara, Japan

TAKASHI KOBAYASHI • Department of Dermatology, Chiba University School of Medicine, Chiba, Japan

LÁSZLÓ G. KÖMÜVES • Department of Dermatology, VA Medical Center, University of California at San Francisco, San Francisco, CA and Millennium Pharmaceuticals, San Francisco, CA

PETER KRISTENSEN • Department of Molecular Biology, University of Aarhus, Aarhus, Denmark

COREY LARGMAN • Departments of Dermatology and Medicine, VA Medical Center, University of California at San Francisco, San Francisco, CA

DANIELLE LAROCHE • Laboratoire de Recherche des Grands Brûles/LOEX and Department of Surgery, Laval University, Québec, Québec, Canada

AMY LI • Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, East Melbourne, Victoria, Australia

MEI LI • Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) and ICS, Illkirch, France

NICOLE MAAS-SZABOWSKI • Division of Carcinogenesis and Differentiation, German Cancer Research Center, Heidelberg, Germany

ALEXANDER MARGULIS • Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine and Department of Anatomy and Cellular Biology, School of Medicine, Tufts University, Boston, MA

HIROKI MARUYAMA • Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

MAJA MATIC • Departments of Biochemistry and Cell Biology and Pathology, The State University of New York at Stony Brook, Stony Brook, NY

JIN-JUN MENG • Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati OH

DANIEL METZGER • Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) and ICS, Illkirch, France

JUN-ICHI MIYAZAKI • Division of Stem Cell Regulation Research, Osaka University Medical School, Osaka, Japan

HITOSHI MIZUTANI • Department of Dermatology, Faculty of Medicine, Mie University, Mie, Japan

REBECCA J. MORRIS • Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY
JUN O HGANE • Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, University of Tokyo, Tokyo, Japan
WILLIAM R. OTTO • Histopathology Unit, London Research Institute, Cancer Research UK, London, UK
ANNALISA PIRRONE • Department of Medicine (Dermatology), University of Washington, Seattle, WA
RICHARD B. PRESLAND • Departments of Oral Biology and Medicine (Dermatology), University of Washington, Seattle, WA
CHRISTOPHER PULLIS • Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY
RAMTIN RAHBAR • Ottawa Health Research Institute, Ottawa, Ontario, Canada
SHANKER P. REDDY • IntegriDerm Inc., Birmingham, AL
RICHARD P. REDVERS • Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, East Melbourne, Victoria, Australia
FEDERICA RIVA • Histology and Embryology Unit, Department of Experimental Medicine, University of Pavia, Pavia, Italy
ULRICH RODECK • Department of Dermatology and Cutaneous Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
MEGHAN ROJAS • Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati OH
JOOST SCHALKWIJK • Department of Dermatology, University Medical Center Nijmegen, Nijmegen, The Netherlands
CHUN-SHEN SHEN • Department of Dermatology, Faculty of Medicine, Mie University, Japan
KUNIO SHIOTA • Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, University of Tokyo, Tokyo, Japan
SANFORD R. SIMON • Departments of Biochemistry and Cell Biology and Pathology, State University of New York at Stony Brook, Stony Brook, NY
HANS-JÜRGEN STARK • Division of Carcinogenesis and Differentiation, German Cancer Research Center, Heidelberg, Germany
JOHN T. STICKNEY • Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati OH
TOSHIHIRO SUGIYAMA • Department of Biochemistry, Akita University, School of Medicine, Akita, Japan
TAMMY-CLAIRE TROY • Ottawa Health Research Institute, Ottawa, Ontario, Canada
KURSAD TURKSEN • Hormones, Growth, and Development Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada
PIET E. J. VAN ERP • Department of Dermatology, University Medical Center Nijmegen, Nijmegen, The Netherlands
FRED VAN RUISSEN • Department of Neurogenetics, Academic Medical Centre, Amsterdam, The Netherlands
ASHLEY E. WEBB • Molecular and Cellular Biology Program, Department of Biochemistry, University of Washington, Seattle
JÖRG WEISKE • Charité-Medical Universities Berlin, Campus Benjamin Franklin, Institute of Clinical Chemistry and Pathobiochemistry, Berlin, Germany.
Contributors

SARAH H. WILLIAMS • Pediatric Molecular Genetics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK

WEI-YANG WU • Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY

KIYOFUMI YAMANISHI • Department of Dermatology, Hyogo College of Medicine, Hyogo, Japan

KYONGGEUN YOON • Departments of Dermatology and Cutaneous Biology and Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA

WEITIAN ZHANG • Division of Cancer Biology and Tissue Engineering, Department of Oral and Maxillofacial Pathology, School of Dental Medicine and Department of Anatomy and Cellular Biology, School of Medicine, Tufts University, Boston, MA
Color Plates

Color Plates 1–5 appear as an insert following p. 238.

PLATE 1 Confocal immunofluorescence micrographs of HaCat cells double stained with anti-desmoglein-3 antibody and anti-cytokeratin pan antibody. (See full caption on p. 186, Chapter 20.)

PLATE 2 Two-photon fluorescence intensity images before and after UV irradiation of ex vivo human breast tissue incubated with DHR. (See full caption on p. 419, Chapter 39.)

PLATE 3 These images show that similar results as from the ex vivo skin are found with the skin equivalent EpiDerm™ 200. (See full caption on p. 419, Chapter 39.)

PLATE 4 GFP visualization in hair shafts of adenoviral–GFP transduced grafted skin. (See full caption on p. 438, Chapter 42.)

PLATE 5 Hair follicle stem cells in hair growth cycle. (See full caption on p. 442, Chapter 42.)