Capillary Electrophoresis of Proteins and Peptides
Capillary Electrophoresis of Proteins and Peptides

Edited by

Mark A. Strege
Eli Lilly and Company, Indianapolis, IN

Avinash L. Lagu
Lilly Research Laboratories, Indianapolis, IN
Preface

Throughout the more than 20 years that have followed the beginnings of capillary electrophoresis (CE), its application to the analysis of proteins and peptides has continued to be reliable, versatile, and productive. Over time, CE has matured to become a superb complement to HLPC, and in many cases has also evolved as an automated and quantitative replacement for conventional slab gel electrophoresis methods such as SDS-PAGE and isoelectric focusing.

Within *Capillary Electrophoresis of Proteins and Peptides*, we have assembled contributions from researchers who are applying state-of-the-art CE for protein and peptide analysis, including topics that we believe are of great potential both in the present and for the future.

In comparison to traditional separation methods, CE represents a miniaturized analysis technique (especially in its microchip-based format) that is highly dependent upon the basic fundamentals of effective sample recovery and high sensitivity detection. With these issues in mind, Chapters 1–4 describe recently developed approaches for both capillary coatings and analyte detection via laser-induced fluorescence.

Since the discipline of biotechnology has established itself as a primary platform for the application of CE to the analysis of proteins and peptides, Chapters 5–7 demonstrate a variety of examples of the specific techniques that have been applied for the development of biopharmaceuticals and their commercialization. The methods covered here include also the analysis of oligosaccharides from glycoproteins.

Studies of the association of proteins with other molecules can provide insight into the very heart of biological processes. Therefore, a major focus within both the pharmaceutical industry and academia is the utilization of CE for the characterization of protein interactions with ligands, other proteins, and large biopolymers. Chapters 8–11 describe in detail the most recent approaches for performing affinity capillary electrophoresis for the evaluation of protein binding, including the use of protein charge ladders.

CE and capillary isoelectric focusing have been providing rapid, high-resolution separations of proteins. When combined with electrospray mass spectrometry detection they constitute a powerful analysis system capable
of supporting complex studies such as those associated with proteomics. Chapters 12–15 focus on the use of CE within this exciting field. The use of CE in microfluidics format is also presented here.

The objective of Capillary Electrophoresis of Proteins and Peptides, by its breadth, topicality, and forward focus, is to serve as a valuable guide for researchers across many disciplines. We look forward with great anticipation to the impact this collection will have, as researchers new to the field are carried forward in their work by the experts’ step-by-step guidance and notes provided within these chapters.

Mark A. Strege
Avinash L. Lagu
Contents

Preface .. v
Contributors ... ix

1 Surfactant-Based Methods for Prevention of Protein Adsorption in Capillary Electrophoresis
 Charles A. Lucy, Nicole E. Baryla, and Ken K.-C. Yeung 1

2 Capillary Coating for Protein Separation Based on Si-O and Si-C Covalent Bond Formation for Capillary Electrophoresis With Laser-Induced Fluorescence Detection
 Hossein Ahmadzadeh, Norman J. Dovichi, and Sergey Krylov 15

3 On-Column Labeling Reaction for Analysis of Protein Contents of a Single Cell Using Capillary Electrophoresis With Laser-Induced Fluorescence Detection
 Hossein Ahmadzadeh and Sergey Krylov 29

4 Covalent and Noncovalent Labeling Schemes for Near-Infrared Dyes in Capillary Electrophoresis Protein Applications
 John Sowell, Jozef Salon, Lucjan Strekowski, and Gabor Patonay 39

5 Capillary Electrophoresis in the Analysis and Monitoring of Biotechnological Processes
 Vadim Klyushnichenko .. 77

6 Capillary Electrophoresis of Proteins in a Quality Control Environment
 David L. Good, Stacey Cummins-Bitz, Raeann M. Fields, and Brian K. Nunnally ... 121

7 Analysis of Neutral N-Linked Oligosaccharides From Antibodies Using Free-Solution Capillary Electrophoresis in Bare Fused-Silica Capillaries
 Jeffrey S. Patrick, Brenda P. Rener, Gregory S. Clanton, and Avinash L. Lagu .. 137

8 Affinity Capillary Electrophoresis to Examine Receptor–Ligand Interactions
 Maryam Azad, John Kaddis, Valerie Villareal, Lili Hernandez, Catherine Silverio, and Frank A. Gomez 153
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Screening Major Binding Sites on Human Serum Albumin by Affinity Capillary Electrophoresis</td>
<td>Hee Seung Kim, John Austin, and David S. Hage</td>
<td>169</td>
</tr>
<tr>
<td>10</td>
<td>Using Charge Ladders and Capillary Electrophoresis to Measure the Charge, Size, and Electrostatic Interactions of Proteins</td>
<td>Upma Sharma and Jeffrey D. Carbeck</td>
<td>189</td>
</tr>
<tr>
<td>11</td>
<td>Frontal Analysis Continuous Capillary Electrophoresis for Protein–Polyelectrolyte Binding Studies</td>
<td>Emek Seyrek, Toshiaki Hattori, and Paul L. Dubin</td>
<td>217</td>
</tr>
<tr>
<td>12</td>
<td>Analysis of Proteins by CE, CIEF, and Microfluidic Devices With Whole-Column-Imaging Detection</td>
<td>Jiaqi Wu, Xing-Zheng Wu, Tiemin Huang, and Janusz Pawliszyn</td>
<td>229</td>
</tr>
</tbody>
</table>

Index .. 325
Contributors

HOSSEIN AHMADZADEH • Department of Chemistry, University of Minnesota, Minneapolis, MN

JOHN AUSTIN • Department of Chemistry, University of Nebraska, Lincoln, NE

MARYAM AZAD • Department of Chemistry and Biochemistry, California State University, Los Angeles, CA

NICOLE E. BARYLA • Eli Lilly Canada, Inc., Toronto, Ontario, Canada

STACEY CUMMINS-BITZ • Indianapolis Bulk Operations Technical Excellence Centre, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN

JEFFREY D. CARBECK • Department of Chemical Engineering, Princeton University, Princeton, NJ

GREGORY S. CLANTON • Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN

NORMAN J. DOVICHI • Department of Chemistry, University of Washington, Seattle, WA

PAUL L. DUBIN • Department of Chemistry, Indiana University-Purdue University at Indianapolis, Indianapolis, IN

RAEANN M. FIELDS • Indianapolis Bulk Operations Technical Excellence Centre, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN

FRANK A. GOMEZ • Department of Chemistry and Biochemistry, California State University, Los Angeles, CA

DAVID L. GOOD • Indianapolis Bulk Operations Technical Excellence Centre, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN

DAVID S. HAGE • Department of Chemistry, University of Nebraska, Lincoln, NE

JED HARRISON • Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada

TOSHIAKI HATTORI • Research Center for Chemometrics, Toyohashi University of Technology, Toyohashi, Japan

LILI HERNANDEZ • Department of Chemistry and Biochemistry, California State University, Los Angeles, CA

TIEMIN HUANG • Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

JOHN KADDIS • Department of Chemistry and Biochemistry, California State University, Los Angeles, CA

HEE SEUNG KIM • Department of Chemistry, University of Nebraska, Lincoln, NE
VADIM KLYUSHNICHENKO • Altus Biologics Inc., Cambridge, MA
SERGEY KRYLOV • Department of Chemistry, York University, Toronto, Ontario, Canada
AVINASH L. LAGU • Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
JIANJUN LI • Institute for Biological Sciences, Ottawa, Ontario, Canada
CHARLES A. LUCY • Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
SUZANA MARTINOVIC • Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA
MEHDI MOINI • Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas
BRIAN K. NUNNALLY • Vaccine Analytical Development, Wyeth Research, Wyeth, Sanford, NC; formerly, Indianapolis Bulk Operations Technical Excellence Centre, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
LIJILIANA PAŠA-TOLIĆ • Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA
GABOR PATONAY • Department of Chemistry, Georgia State University, University Plaza, Atlanta, GA
JEFFREY S. PATRICK • Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
JANUSZ PAWLIŻYN • Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
BRENDA P. RENER • Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
JOZEF SALON • Department of Chemistry, Georgia State University, University Plaza, Atlanta, GA
EMEK SEYREK • Department of Chemistry, Indiana University-Purdue University at Indianapolis, Indianapolis, IN
UPMA SHARMA • Department of Chemical Engineering, Princeton University, Princeton, NJ
CATHERINE SILVERIO • Department of Chemistry and Biochemistry, California State University, Los Angeles, CA
RICHARD D. SMITH • Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA
JOHN SOWELL • Department of Chemistry, Georgia State University, University Plaza, Atlanta, GA
LUCIAN STREKOWSKI • Department of Chemistry, Georgia State University, University Plaza, Atlanta, GA
PIERRE THIBAULT • Institut de Recherche en Immunovirologie et Cancérologie, Université de Montréal, Quebec, Canada
TAMMY-LYNN TREMBLAY • Institute for Biological Sciences, Ottawa, Ontario, Canada
VALERIE VILLAREAL • Department of Chemistry and Biochemistry, California State University, Los Angeles, CA
JIAQI WU • Convergent Bioscience Ltd., Toronto, Ontario, Canada
XING-ZHENG WU • Department of Materials Science and Engineering, Fukui University, Fukui-shi, Japan
KEN K.-C. YEUNG • Departments of Chemistry and Biochemistry, University of Western Ontario, London, Ontario, Canada