Platelets and Megakaryocytes
Platelets and Megakaryocytes

Volume 2
Perspectives and Techniques

Edited by

Jonathan M. Gibbins
School of Animal and Microbial Sciences,
The University of Reading, Reading, UK

Martyn P. Mahaut-Smith
Department of Physiology,
University of Cambridge, Cambridge, UK

HUMANA PRESS TOTOWA, NEW JERSEY
Preface

The average human body has on the order of 10^{12} circulating platelets. They are crucial for hemostasis, and yet excessive platelet activation is a major cause of morbidity and mortality in Western societies. It is therefore not surprising that platelets have become one of the most extensively investigated biological cell types. We are, however, far from understanding precisely how platelets become activated under physiological and pathophysiological conditions. In addition, there are large gaps in our knowledge of platelet production from their giant precursor cell, the megakaryocyte. Understanding megakaryocyte biology will be crucial for the development of platelet gene targeting. The aim of *Platelets and Megakaryocytes* is therefore to bring together established and recently developed techniques to provide a comprehensive guide to the study of both the platelet and the megakaryocyte. It consists of five sections split between two volumes. The more functional assays appear in Volume 1, whereas Volume 2 includes signaling techniques, postgenomic methods, and a number of key perspectives chapters.

Part I of Volume 1, *Platelets and Megakaryocytes: Functional Assays*, describes many well-established approaches to the study of platelet function, including aggregometry, secretion, arachidonic acid metabolism, procoagulant responses, platelet adhesion under static or flow conditions, flow cytometry, and production of microparticles. Although one would ideally wish to perform experiments with human platelets, studies within the circulation using intravital microscopy require the use of animal models, which are described in Chapter 16, vol. 1. These approaches are becoming increasingly important in our understanding of how platelet responses contribute to the complex formation of thrombi within the circulation. Although naturally occurring genetic mutations can indicate the importance of specific proteins, these are limited in frequency and scope and thus many laboratories are using transgenic animals to delete or upregulate individual gene products (see Chapter 2, vol. 2). Consequently, the application of platelet techniques to murine models has become a focus of many labs in recent years (e.g., Chapters 2, 16, 20, vol. 1). In addition to basic and advanced approaches to study platelet function, several chapters in this section (particularly 1 and 2, vol. 1) focus on the long-standing issue of the effects of different anticoagulants and procedures to prepare platelets. The experimenter has a choice of studying platelets within the blood, in plasma, or in an artificial medium. In whole blood, potential interactions with other cell types and plasma proteins are included, which is in many ways the most physiological in vitro approach (see Chapter 6, vol. 1), however this is a complex situation and interpretation can be difficult. In studies within plasma, other cells are removed, but the clotting cascade is retained (see Chapter 5, vol. 1). Frequently, however, platelets are studied in isolation from other cells and plasma following their resuspension in an artificial medium. The preparation of platelets from human and other species is not a trivial matter and great care is required.
to ensure that the method of preparation does not adversely affect subsequent analysis (see Chapter 2, vol. 1).

Part II of Volume 1 focuses on approaches used to study megakaryocyte function, including the development of specialized structures for future production of platelets (e.g., the demarcation membrane system), the appearance of platelet-specific surface receptors, and the increase in ploidy. The source of megakaryocytes is often a complex issue facing many researchers owing to the extremely low density (<1%) of this cell type in its primary location, the marrow. Techniques to purify megakaryocytes from marrow based on their unique size and surface markers are described in Chapter 22, vol. 1, along with approaches to maintain these cells in culture and monitor formation of platelet-generating proplatelet structures. An alternative approach to generating megakaryocytes is to grow them in culture from precursor cells as detailed in Chapter 23, vol. 1. This requires the presence of thrombopoietin (Chapter 26, vol. 1) acting through its receptor, c-Mpl, and normally other cytokines. The availability of systems to generate megakaryocytes in vitro provides a promising avenue to generate genetically modified platelets. Although there is no doubt that continuous megakaryocyte cell lines are useful for some studies of signaling in these cells, they have their limitations and the pros and cons are discussed in Chapter 27, vol. 1.

Many basic and advanced techniques for the general study of cell signaling have been applied in studies to characterize the mechanisms of regulation of platelet function. These include ligand-binding assays, the study of protein and lipid kinases and phosphatases, the analysis of lipid rafts in the regulation of cell signaling, the measurement of intracellular calcium levels, electrophysiological techniques, nitric oxide signaling, the use of venom proteins, and the internalization of proteins into platelets through permeabilization. These techniques and more are presented in Part II of Volume 2. In many respects, the megakaryocyte is a giant platelet. Differences do occur in the arrangement of cellular organelles and cytoskeleton in the two cells, however, megakaryocytes respond to platelet agonists such as ADP with full downstream functional responses (discussed in Chapters 1 and 16, vol. 2). Therefore, despite differences in ultrastructure, the megakaryocyte has earned its place as a sufficient, if not comparable model of platelet signaling. Many of the signaling techniques are therefore beginning to be applied to the megakaryocyte, which, because of its size, is proving to be an extremely interesting model for platelet signaling, particularly using single cell approaches such as imaging and electrophysiology (see Chapters 16 and 17, vol. 2).

Part III of Volume 2 is dedicated to recent advances in molecular techniques and post-genomic techniques and how they may be applied to the study of platelets and megakaryocytes. This section includes descriptions of how retroviruses may be used to express genes in primary megakaryocytes, the use of GFP-fusion proteins to study signaling in live cells, two-dimensional electrophoresis for platelet proteomics, the production of platelet cDNA libraries and the use of gene array technology.

Although the main aim of the book is to include practical approaches to the study of platelets and megakaryocytes, a series of perspectives chapters are included (Part I, vol. 2). These chapters review the current understanding of platelet and megakaryo-
cyte biology in addition to their discussions of important new developments and experimental strategies. Many of the methods chapters also include further discussion and background on specific techniques.

This book has only been made possible by the efforts of many international experts in the field. We are grateful to them for their willingness to contribute their knowledge, in particular their tricks of the trade, which have resulted from many years of dedicated hands-on work. We also wish to thank our colleagues within the Department of Physiology at Cambridge and the School of Animal and Microbial Sciences at Reading for helpful discussion during the course of the editing work, in particular Peter Wooding on electron microscopy and Gwen Tolhurst on molecular techniques. We are also grateful to Margaret Bardy and Karen Parr for considerable secretarial assistance. We are also grateful to the following companies for supporting the cost of color reproduction: Eli Lilly and Company, Cairn Research Ltd., Bio Rad Laboratories Ltd., and Sysmex UK Ltd.

Jonathan M. Gibbins
Martyn P. Mahaut-Smith
Contents of Volume 2

Perspectives and Techniques
Preface .. v
Contents of Volume I .. xiii
Contributors .. xv
Color Plates ... xix

PART I. PERSPECTIVES
1 Signaling Receptors on Platelets and Megakaryocytes
 Donna Woulfe, Jing Yang, Nicolas Prevost, Peter O’Brien,
 Ryan Fortna, Massimiliano Tognolini, Hong Jiang, Jie Wu,
 and Lawrence F. Brass .. 3

2 Manipulation of Gene Expression in Megakaryocytes
 Nikla R. Emambokus, George J. Murphy, and Jonathan Frampton 33

3 In Vitro Changes of Platelet Parameters:
 Lessons From Blood Banking
 José Rivera, María L. Lozano, and Vicente Vicente 57

4 Pharmacological Approaches to Studying Platelet Function:
 An Overview
 Susanna M. O. Hourani ... 73

5 Inhibitors of Cellular Signaling Targets: Designs and Limitations
 Chris J. Vlahos and Louis F. Stancato ... 87

PART II SIGNALING TECHNIQUES
6 Ligand-Binding Assays for Collagen
 Stephanie M. Jung and Masaaki Moroi ... 105

7 Use of Radiolabeled 2-Methylthio-ADP to Study P2Y Receptors
 on Platelets and Cell Lines
 Pierre Savi and Jean-Marc Herbert ... 115

8 Ligand-Binding Assays: Fibrinogen
 Dermot Cox .. 125

9 Techniques for the Analysis of Proteins by SDS-Polyacrylamide
 Gel Electrophoresis and Western Blotting
 Jonathan M. Gibbins ... 139

10 Study of Tyrosine Kinases and Protein Tyrosine Phosphorylation
 Jonathan M. Gibbins ... 153

11 Protein Tyrosine Phosphatases
 Matthew L. Jones and Alastair W. Poole 169
Contents

12 The Study of Serine-Threonine Kinases
 Gertie Gorter and Jan Willem Akkerman ... 179

13 Phosphoinositides: Lipid Kinases and Phosphatases
 Bernard Payrastre ... 201

14 Isolation and Analysis of Platelet Lipid Rafts
 Corie N. Shrimpton, Karine Gousset, Fern Tablin,
 and José A. López ... 213

15 Measurement and Manipulation of \([\text{Ca}^{2+}]_i\) in Suspensions
 of Platelets and Cell Cultures
 Philippe Ohlmann, Béatrice Hechler, Jean-Pierre Cazenave,
 and Christian Gachet .. 229

16 Measurement and Manipulation of Intracellular \([\text{Ca}^{2+}]\)
 in Single Platelets and Megakaryocytes
 Michael J. Mason and Martyn P. Mahaut-Smith 251

17 Patch-Clamp Recordings of Electrophysiological Events
 in the Platelet and Megakaryocyte
 Martyn P. Mahaut-Smith ... 277

18 Evaluation of Nitrotyrosine-Containing Proteins in Blood Platelets
 Khalid M. Naseem, Rocio Riba, and Max Troxler 301

19 Nitric Oxide Signaling in Platelets
 Sylvia Y. Low and K. Richard Bruckdorfer 313

20 Snake Venom Toxins Affecting Platelet Function
 Robert K. Andrews, Elizabeth E. Gardiner,
 and Michael C. Berndt .. 335

21 Peptide Synthesis in the Study of Collagen–Platelet Interactions
 C. Graham Knight, Catherine M. Onley,
 and Richard W. Farndale .. 349

22 Platelet Permeabilization
 Robert Flaumenhaft .. 365

PART III. MOLECULAR AND POST-GENOMIC TECHNIQUES

23 Using Retroviruses to Express Genes in Primary Megakaryocyte
 Lineage Cells
 Meenakshi Gaur, George J. Murphy, Jonathan Frampton,
 and Andrew D. Leavitt .. 381

24 Use of Antisense Oligonucleotide Technology to Investigate
 Signaling Pathways in Megakaryocytes
 Hava Avraham, Shalom Avraham,
 and Radoslaw Zagozdzon ... 397
Contents xi

25 GFP Fusion Proteins to Study Signaling in Live Cells
Simon A. Walker, Gyles E. Cozier, and Peter J. Cullen 407

26 Two-Dimensional Polyacrylamide Gel Electrophoresis
for Platelet Proteomics
Katrin Marcus and Helmut E. Meyer .. 421

27 Preparation of mRNA and cDNA Libraries From Platelets
and Megakaryocytes
Benjamin Z. S. Paul, Jiango Jin, and Satya P. Kunapuli 435

28 Platelet Receptor Structures and Polymorphisms
Thomas J. Kunicki, Steven Head, and Daniel R. Salomon 455

29 Gene Array Technology and the Study of Platelets
and Megakaryocytes
Lloyd T. Lam and Emery H. Bresnick .. 479

Index ... 491
Contents of the Companion Volume

Volume 1: Functional Assays

Part I. Platelet Functional Assays

1 Effects of Anticoagulants Used During Blood Collection on Human Platelet Function
 Jane A. May and Stanley Heptinstall

2 Preparation of Washed Platelet Suspensions From Human and Rodent Blood
 Jean-Pierre Cazenave, Philippe Ohlmann, Dominique Cassel, Anita Eckly, Béatrice Hechler, and Christian Gachet

3 Platelet Counting
 Paul Harrison, Carol Briggs, and Samuel J. Machin

4 Electron Microscopy Methods for Studying Platelet Structure and Function
 James G. White

5 Platelet Aggregation: Turbidimetric Measurements
 Gavin E. Jarvis

6 Platelet Aggregation in Whole Blood: Impedance and Particle Counting Methods
 Gavin E. Jarvis

7 Secretion From Dense Granules: Luminescence Method for Adenine Nucleotides
 M. Fred Heath

8 Platelet Dense-Granule Secretion: The [3H]-5-HT Secretion Assay
 David Crosby and Alastair W. Poole

9 Analysis of Releasable Nucleotides of Platelets
 Joachim Jankowski, Lars Henning, and Hartmut Schlüter

10 Studies of Secretion Using Permeabilized Platelets
 Tara W. Rutledge and Sidney W. Whiteheart

11 Measurement of Platelet Arachidonic Acid Metabolism
 Richard W. Farndale, Philip G. Hargreaves, Joanna L. Dietrich, and Rosemary J. Keogh

12 Measurement of the Platelet Procoagulant Response
 Johan W. M. Heemskerk, Paul Comfurius, Marion A. H. Feijge, and Edouard M. Bevers

13 Platelet Adhesion Assays Performed Under Static Conditions
 Joanne M. Stevens
Chapter 14 Platelet Adhesion Assays Under Flow Using Matrix Protein-Coupled Adhesion Columns
Renata Polanowska-Grabowska and Adrian R. L. Gear

Chapter 15 Techniques to Examine Platelet Adhesive Interactions Under Flow

Chapter 16 In Vivo Models of Platelet Function and Thrombosis: Study of Real-Time Thrombus Formation
Shahrokh Falati, Peter L. Gross, Glenn Merrill-Skoloff, Derek Sim, Robert Flaumenhaft, Alessandro Celi, Barbara C. Furie, and Bruce Furie

Chapter 17 Adhesion Between Platelets and Leukocytes or Endothelial Cells
Gerard B. Nash

Chapter 18 In Vitro Measurement of High-Shear Platelet Adhesion and Aggregation by the PFA-100®
Paul Harrison

Chapter 19 Flow-Cytometric Analysis of Platelet-Membrane Glycoprotein Expression and Platelet Activation
Alison H. Goodall and Jackie Appleby

Chapter 20 Flow-Cytometric Analysis of Mouse Platelet Function
Bernhard Nieswandt, Valerie Schulte, and Wolfgang Bergmeier

Chapter 21 Platelet Microparticles
Shosaku Nomura and Shirou Fukuhara

Part II. Megakaryocyte Functional Assays

Chapter 22 Isolation of Primary Megakaryocytes and Studies of Proplatelet Formation
Robert M. Leven

Chapter 23 Isolation and Culture of Megakaryocyte Precursors
Najet Debili, Fawzia Louache, and William Vainchenker

Chapter 24 Assays of Megakaryocyte Development: Surface Antigen Expression, Ploidy, and Size
Anthony Mathur, Ying Hong, Guosu Wang, and Jorge D. Erusalimsy

Chapter 25 Assays of Megakaryocyte Development: Cytoplasm, Storage Granules, and Demarcation Membranes
Arnaud Drouin, Gulie Alimardani, and Elisabeth M. Cramer

Chapter 26 Thrombopoietin Bioassay
Warren S. Alexander and Craig Hyland

Chapter 27 Culture of Megakaryocytic Cell Lines: Uses and Limitations
Norio Komatsu
Contributors

JAN WILLEM AKKERMAN • Department of Haematology, University Medical Center Utrecht, The Netherlands
ROBERT K. ANDREWS • Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
HAVA AVRAHAM • Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA
SHALOM AVRAHAM • Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA
MICHAEL C. BERNDT • Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
LAWRENCE F. BRASS • Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
EMERY H. BRESNICK • Molecular and Cellular Pharmacology, University of Wisconsin Medical School, Madison, WI
K. RICHARD BRUCKDORFER • Department of Biochemistry and Molecular Biology, University College London, London, UK
JEAN-PIERRE CAZENAVE • INSERM U.311, Etablissement Français du Sang-Alsace, Strasbourg, France
DERMOT COX • Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland
GYLES E. COZIER • Integrated Signalling Laboratories, Department of Biochemistry, University of Bristol, Bristol, UK
PETER J. CULLEN • Integrated Signalling Laboratories, Department of Biochemistry, University of Bristol, Bristol, UK
NIKLA R. EMAMBOKUS • Division of Hematology/Oncology, Children’s Hospital, Boston, MA
RICHARD W. FARNDALE • Department of Biochemistry, University of Cambridge, Cambridge, UK
ROBERT FLAUMENHAFT • Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
RYAN FORTNA • Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
JONATHAN FRAMPTON • Department of Anatomy, Birmingham University Medical School, Birmingham, UK
CHRISTIAN GACHET • INSERM U.311, Etablissement Français du Sang-Alsace, Strasbourg, France
ELIZABETH E. GARDNER • Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
MEENAKSHI GAUR • Departments of Laboratory and Internal Medicine, University of California, San Francisco, CA
KHALID M. NASEEM • Department of Biomedical Sciences, University of Bradford, Bradford, UK
PETER O’BRIEN • Diagnostic and Experimental Medicine, Lilly Research Laboratories, Indianapolis, IN
PHILIPPE OHLMANN • INSERM U.311, Etablissement Français du Sang-Alsace, Strasbourg, France
CATHERINE M. ONLEY • Department of Biochemistry, University of Cambridge, Cambridge, UK
BENJAMIN Z. S. PAUL • Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
BERNARD PAYRASTRE • Inserm U563, Department of Oncogenesis and Signal Transduction in Hematopoietic Cells, Hopital Purpan, Toulouse, France
ALASTAIR W. POOLE • Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK
NICOLAS PREVOST • Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
ROCIO RIBA • Department of Biomedical Sciences, University of Bradford, Bradford, UK
JOSÉ RIVERA • Department of Haematology and Oncology, School of Medicine, University of Murcia and Centro Regional de Hemodonación, Spain
DANIEL R. SALOMON • Division of Experimental Hemostasis & Thrombosis, Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA
PIERRE SAVI • Cardiovascular/Thrombosis Research Department, Sanofi-Synthélabo Recherche, Toulouse, France
COREN N. SHRIMPTON • Division of Thrombosis Research, Baylor College of Medicine and Houston VA Medical Center, Houston, TX
LOUIS F. STANCATO • Eli Lilly & Company-Sphinx Laboratories, Research Triangle Park, NC
FERN TABLIN • Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA
MASSIMILIANO Tognolini • Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
MAX TROXLER • Vascular Surgical Unit, University of Leeds Medical School, Leeds, UK
VICENTE VICENTE • Department of Haematology and Oncology, School of Medicine, University of Murcia and Centro Regional de Hemodonación, Spain
CHRIS J. VLACHOS • Cardiovascular Research, Lilly Research Laboratories, Indianapolis, IN
SIMON A. WALKER • Inositide Group, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
DONNA WOULFE • Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
JIE WU • Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
JING YANG • Centocor, Inc., Malvern, PA
RADOSŁAW ZAGOSZDZON • Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
Color Plates

Color Plates 1–5 appear as an insert following p. 300.

PLATE 1 Schematic representation of basic retroviral structure and the process of infection. (See full caption on p. 37, Chapter 2.)

PLATE 2 Megakaryocyte-specific retroviral infection through the TVA receptor. (See full caption on p. 39, Chapter 2.)

PLATE 3 Ribbon diagram representation of the crystal structure of wild-type green fluorescent protein from *Aequoria victoria*. (See full caption on p. 408, Chapter 25.)

PLATE 4 Comparison of GFP images obtained with laser scanning and spinning disk confocal microscopes. (See full caption on p. 413, Chapter 25.)

PLATE 5 Summary of the microarray process. (See full caption on p. 481, Chapter 29.)