CANCER CHEMOPREVENTION
CANCER DRUG DISCOVERY AND DEVELOPMENT

BEVERLY A. TEICHER, SERIES EDITOR

Death Receptors in Cancer Therapy, edited by Wafik S. El-Deiry, 2005
Bone Metastasis: Experimental and Clinical Therapeutics, edited by Gurmit Singh and Shafaa A. Rabbani, 2005
The Oncogenomics Handbook, edited by William J. LaRochelle and Richard A. Shimkets, 2005
Camptothecins in Cancer Therapy, edited by Thomas G. Burke and Val R. Adams, 2005
Combination Cancer Therapy: Modulators and Potentiators, edited by Gary K. Schwartz, 2005
Cancer Chemoprevention, Volume 1: Promising Cancer Chemopreventive Agents, edited by Gary J. Kelloff, Ernest T. Hawk, and Caroline C. Sigman, 2004
Proteasome Inhibitors in Cancer Therapy, edited by Julian Adams, 2004
Nucleic Acid Therapeutics in Cancer, edited by Alan M. Gewirtz, 2004
DNA Repair in Cancer Therapy, edited by Lawrence C. Panasci and Moulay A. Alaoui-Jamali, 2004
Hematopoietic Growth Factors in Oncology: Basic Science and Clinical Therapeutics, edited by George Morstyn, MaryAnn Foote, and Graham J. Lieschke, 2004
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics, edited by William D. Figg and Howard L. McLeod, 2004
Handbook of Cancer Vaccines, edited by Michael A. Morse, Timothy M. Clay, and Kim H. Lyerly, 2004
Drug Delivery Systems in Cancer Therapy, edited by Dennis M. Brown, 2003
Oncogene-Directed Therapies, edited by Janusz Rak, 2003
Chemoradiation in Cancer Therapy, edited by Hak Choy, 2003
Fluoropyrimidines in Cancer Therapy, edited by Youcef M. Rustum, 2003
Targets for Cancer Chemotherapy: Transcription Factors and Other Nuclear Proteins, edited by Nicholas B. La Thangue and Lan R. Bandara, 2002
Tumor Targeting in Cancer Therapy, edited by Michel Pagé, 2002
Hormone Therapy in Breast and Prostate Cancer, edited by V. Craig Jordan and Barrington J. A. Furr, 2002
Tumor Models in Cancer Research, edited by Beverly A. Teicher, 2002
TumorSuppressor Genes in Human Cancer, edited by David E. Fisher, 2001
Farnesyltransferase Inhibitors in Cancer, edited by Said M. Sebi and Andrew D. Hamilton, 2001
Platinum-Based Drugs in Cancer Therapy, edited by Lloyd R. Kelland and Nicholas P. Farrell, 2000
Apoptosis and Cancer Chemotherapy, edited by John A. Hickman and Caroline Dive, 1999
Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases, edited by J. Silvio Gutkind, 1999
Antifolate Drugs in Cancer Therapy, edited by Ann L. Jackman, 1999
Antiangiogenic Agents in Cancer Therapy, edited by Beverly A. Teicher, 1999
Cancer Therapeutics: Experimental and Clinical Agents, edited by Beverly A. Teicher, 1997
Despite significant advances in cancer treatment and early detection, overall cancer incidence has increased, cancer-associated morbidity is considerable, and overall cancer survival has remained relatively flat over the past several decades (1,2). However, new technology allowing exploration of signal transduction pathways, identification of cancer-associated genes, and imaging of tissue architecture and molecular and cellular function is increasing our understanding of carcinogenesis and cancer progression. This knowledge is moving the focus of cancer therapeutics, including cancer preventive treatments, to drugs that take advantage of cellular control mechanisms to selectively suppress cancer progression.

Carcinogenesis is now visualized as a multifocal, multipath process of genetic progression occurring over a long time period and resulting in increasing loss of cellular controls. This process provides promising opportunities for chemoprevention, which involves using drugs, biologics, or nutrients to inhibit, delay, or reverse neoplastic progression at any time before the onset of invasive disease. Remarkable progress has been made in developing chemoprevention strategies, started by research on mechanisms of chemopreventive drugs and assays for evaluating these drugs in animal models (3–6), and led in the clinic by early studies on prevention of head and neck carcinogenesis (7,8).

Progressive disorganization provides a strong rationale for early intervention in carcinogenesis when mutations are fewer, even before tissue-level phenotypic changes are evident. However, the long latency also presents a significant challenge for prevention and treatment of early cancer (9,10). That is, cancer incidence reduction studies in subjects at relatively low risk may require thousands of subjects and many years to obtain significant and definitive results. The successful trial of tamoxifen as a chemopreventive for breast cancer illustrates the vast resources required for a primary prevention study, even when the cohort is well defined and the drug effect is already well characterized. This trial was carried out in women who at a minimum had a relative risk for breast cancer equivalent to a 60-year old (11). Six thousand six hundred (6600) treated women and an equivalent number of control subjects were required to achieve a significant \(p < 0.05 \) treatment effect.

This inherent inefficiency in validating that chemopreventive treatment results in net clinical benefit for the patient (subject) has led to intensive research efforts to develop useful biomarkers. These biomarkers include measures of neoplastic progression, drug effect (or pharmacodynamic markers), and markers that measure prognosis as well as predict responses to specific therapy. All these biomarkers have the potential to greatly augment the development of successful chemoprevention therapies, but two specific types of biomarkers will have the most immediate impact on successful chemopreventive drug development—those that measure the risk of developing invasive life-threatening disease, and those whose modulation can “reasonably predict” clinical benefit and, therefore, serve as surrogate endpoints for later-occurring clinical disease. Thus far, the biomarker that best measures these two phenomena is intraepithelial neoplasia (IEN) because it is a near obligate precursor to cancer. As precancer, it is a very good risk marker for cancer development; and as a recognized disease that is being treated, it has been validated as a surrogate endpoint biomarker (12–14). Since IEN is discussed extensively in many chapters in this volume, the three important features that characterize IEN are presented in some detail below.

IEN is a near obligate precursor to cancer. IEN occurs in most epithelial tissue as moderate to severe dysplasia, is on the causal pathway leading from normal tissue to cancer, and is close in progression to cancer (invasive neoplasia). Genetic progression with loss of cellular control functions is observed as the phenotype gradually changes from normal histology to early dysplasia then to increasingly severe IEN, superficial cancers, and finally invasive disease. For example, in the breast it is estimated that progression from atypical hyperplasia through ductal carcinoma in situ (DCIS) to adenocarcinoma requires 10–20 years or more (15,16). Colorectal adenomas may form over a period as long as 5–20 years, and progression from adenoma to colorectal carcinoma usually requires another 5–15 years (17–20). Prostatic intraepithelial neoplasia (PIN) may develop over approximately 20 years. From PIN to early latent cancer may take 10 or more years, and clinically significant carcinoma may not occur until 3–15 years later (21). Progression is marked in target tissues by the appearance of specific molecular and more general genotypic damage associated with increasingly severe dysplastic histology. In many cases, critical early steps include inactivation of tumor suppressors such as APC in colon or BRCA in breast cancers, and activation of oncogenes such as ras in colon, lung, and pancreatic cancers. Progression is also influenced by factors specific to the host tissue’s environment, such as the action of hormones and cytokines produced in stroma around
the developing epithelial tumor and changes in tissue structure. IEN shows these changes and provides a suitable target for treatment intervention because of its phenotypic and genotypic similarities and evolutionary proximity to invasive cancer.

IEN as precancer is a risk marker for cancer. Subjects with IEN, particularly severe IEN, are at significantly higher risk than unaffected populations for developing invasive cancer in the same tissues. Among measurable risk factors, only germline mutations that occur in genetic cancer syndromes confer higher risk. For example and as reviewed previously (14), very strong evidence associates the presence of colorectal adenomas with subsequent development of invasive cancer; increasing risk correlates to type of histological growth pattern (villous > tubulovillous > tubular) and increasing size and severity of dysplasia. PIN as a risk marker for prostate cancer and the characteristics of PIN progression have also been described (21–24). This evidence includes similar cellular morphology and atypia in high-grade PIN (HGPIN) and prostatic adenocarcinoma (cellular atypia observed in HGPIN is virtually indistinguishable from invasive cancer, except that in HGPIN no invasion has occurred). It also includes the spatial and temporal association of HGPIN to prostate cancer, with both being found primarily in the peripheral zone, and much more infrequently in the transition zone. As PIN progresses, the likelihood of damage to the basal cell layer and basement membrane increases. Certain cytoskeletal proteins, secreted proteins, and degree of glycosylation are shared by PIN and cancer, but not by benign prostatic hyperplasia or normal prostate epithelium. The most compelling data on the temporal relationship of PIN and cancer comes from studies showing that patients with HGPIN and no detectable cancer progressed to a 40% incidence of cancer in three years and to approximately 80% incidence in ten years.

IEN is precancer and in its own right is a disease; treatment provides clinical benefit. Because IEN is a near obligate precursor to invasive cancer, it is standard clinical practice to utilize invasive surgical interventions to reduce the burden of IEN, e.g., colon adenomas, oral leukoplakia, cervical IEN (CIN) 2/3, breast DCIS. Therefore, reducing IEN burden is an important and suitable goal for medical (noninvasive) intervention to reduce invasive cancer risk and to reduce surgical morbidity (14). High-risk individuals with established IEN are cohorts for clinical trials to demonstrate the effectiveness of new chemopreventive agents for IEN treatment. Moreover, treatment is needed not only for clinically apparent IEN, but also the entire epithelial sheet at risk of developing IEN ("field cancerization," e.g., ref. 25), to ensure reduced need for surgical removal of IEN.

These features of IEN explain why it is at present the best surrogate endpoint for invasive cancer, since no serious student of cell biology or pathology questions that the morphologic changes associated with IEN are part of and predict the cancer process, and that the lesions of genetic progression manifest themselves within IEN as cytological abnormalities of neoplasia—increased nuclear size; abnormal nuclear shape; increased nuclear stain uptake; variations in cellular size, shape and stain uptake; increased mitosis; abnormal mitosis; disordered maturation (differentiation) (26). In summary, because of the probability that its presence will lead to cancer, IEN is already accepted as a validated endpoint for measurement of cancer risk reduction by both surgical and drug intervention.

Other promising surrogate endpoint biomarkers—genome/proteome expression profiles. Use (validation) of surrogate endpoint biomarkers that, unlike IEN, are not obviously intrinsic to neoplastic progression mostly fail because of the complexity of neoplasia as well as the need for surrogate endpoint biomarkers to "predict patient benefit with reasonable certainty" (27). The failures result because the disease of cancer is tissue-based, and surrogate endpoint biomarker development has been constrained by naive approaches to modeling the disease and its multipath, multifocal development process with isolated molecular and cellular events. Further, for biomarkers to be useful, techniques to determine them need to be robust and exhaustively validated. When using biomarkers in studies, investigators need to comply strictly with validated methods to assure confidence that what is measured is consistent across studies. Achieving this objective may require extensive efforts such as those used to establish standards for the determination of cholesterol. Criteria for biomarker measurements have been the subject of many reviews (e.g., 12,14,28), yet much of the lack of progress derives from faulty adherence to these methodologies. Nonetheless, a sound scientific basis now exists to characterize surrogate endpoint biomarkers for developing drugs (12).

The multipath, multifactorial nature of carcinogenesis is predicted by the heterogeneity that can result from processing the human genome. The 30,000 or so human genes contain as many as several hundred thousand allelic variants from single nucleotide gene polymorphisms including splicing variants (29). These variations are compounded another three- to fivefold by posttranslational protein modifications leading to a multitude (>10^6) of protein–protein interactions (30). Even if only a small fraction of the genome is critical to cancer, the number of possible molecules and interactions involved is enormous. This level of complexity highlights the uncertainties of using isolated molecular and cellular biomarkers to measure carcinogenesis. Moreover, this complexity is heightened by expected intra-/intersubject and tissue variations.
Nonetheless, increasing understanding of genetic progression in cancer (e.g., 31,32) and of signal transduction (33) in cancer target tissues, and observations of genotypic changes characteristic of selected cancers (e.g., 34,35) combined with advances in technology for measuring and characterizing changes in gene and protein expression (30), suggest that analyses of such patterns of gene expression have potential for development as surrogate endpoint biomarkers. For example, progress made in gene chip technology suggests that within a few years it will be trivial to measure 6–12 genes defining a genetic progression model (36). As for all surrogate endpoint biomarkers, the feasibility of genome/proteome expression patterns as surrogate endpoint biomarkers will depend on careful evaluation in the context of carcinogenesis. Therefore, the characterization of molecular markers of carcinogenesis and their future development and validation as surrogate endpoint biomarkers will be most effectively done in situ within IEN.

The further development of genetic progression models will also proceed in this context, as it has from inception. In the not-too-distant future, as understanding of the minimum number of disrupted pathways yielding malignancy grows, patterns of change representing carcinogenesis will be relatively easy to measure. This process will evolve with progress that is being made in understanding and analyzing systems biology. With this understanding will come surrogate endpoint biomarkers in predysplastic tissue (a normal morphologic phenotype); the predictive value of these data will begin to exceed the predictive value of abnormal morphology (IEN). This molecular pathology within IEN lesions, or even prior to appearance of these lesions, will also allow better identification of individuals at risk, improve study efficiency, and provide better quantitative estimation of drug efficacy than effects on IEN alone (12,14,28). These advances in tissue-based biomarkers will be augmented by biomarkers that can be measured non-invasively by molecular imaging, and by functional genomic and proteomic research (14,28).

Net clinical benefit is required. Drug approvals are based on clinical benefit, so the approval of drugs for chemoprevention will depend on some measure of clinical benefit—reduced morbidity, organ preservation, lower cost for surveillance—as well as efficacy against precancers. Because chemopreventive drugs will most likely be administered chronically, they will be expected to demonstrate long-term safety, duration of effect, and minimal drug resistance, or provide alternative strategies to minimize toxicity and maximize efficacy.

Promising Chemopreventive Agents, the companion volume, surveys ongoing efforts to identify drugs, natural products, and other agents that may have potential in cancer chemoprevention. The agents are grouped by pharmacological and/or mechanistic classes and vary widely in terms of stage of development as chemopreventives, ranging from extensively studied groups such as nonsteroidal antiinflammatory drugs (NSAIDs) and antiestrogens to drugs with recently identified potential based on mechanistic activity (e.g., protein kinase inhibitors, histone deacetylase inhibitors, and anti-angiogenesis agents), as well as agents yet to be evaluated in chemoprevention settings (e.g., proteasome and chaperone protein inhibitors). Attention is devoted to food-derived agents (such as tea, curcumin, and soy isoflavones), vitamins, and minerals because of their high promise for prevention in healthy populations.

Provided in this volume, **Strategies for Cancer Chemoprevention,** are guidelines for cancer chemopreventive drug development. Part I is devoted to general strategies and methods for drug discovery, preclinical efficacy, characterization of precancers, safety evaluation, clinical cohorts, and clinical trial design. Part II reviews strategies for and status of chemopreventive agent development at major cancer targets—prostate, breast, colon, lung, head and neck, esophagus, bladder, ovary, endometrium, cervix, skin, liver, and multiple myeloma. Both sections heavily document the characterization and application of reliable biomarkers in chemopreventive drug development.

The first several chapters of Part I consider discovery and preclinical evaluation of new agents. For example, an elegant approach to the challenges of identifying chemopreventive agents in natural products, particularly food plants (e.g., antioxidants, antiinflammatory compounds, and well-defined mixtures) is presented (Chapter 1); this approach addresses factors such as standardization of plant growth and extraction conditions, and considers co-development of a well-defined mixture and its likely active component. The development of preclinical models for evaluating potential chemopreventive agents is particularly important because of the potential for validating surrogate endpoints in animal models where an intermediate biomarker can be evaluated, along with subsequent effects on cancer incidence, and ultimately survival. Chapters in this volume describe well-established carcinogen-induced animal models of carcinogenesis in major cancer targets (Chapter 2), as well as newly defined transgenic and gene knock-in/knock-out mouse models of molecular targets for chemoprevention (Chapter 3), and animal models of genetically inherited cancer susceptibility (Chapter 4).

The importance of precancerous histopathology, particularly IEN, in chemoprevention has been stated. Characteristics and progression of this pathology in most cancer targets are comprehensively reviewed in Chapter 5. The use of computer-assisted image analysis to analyze precancerous tissue in the prostate is described as
an example of the potential application of new quantitative imaging techniques to evaluate chemopreventive efficacy in IEN (Chapter 6). As noted before, genome/proteome expression profiles have high potential as surrogate endpoints for carcinogenesis because they correlate with the clinical progression of carcinogenesis. Several chapters in the book assess potential applications of genomics and proteomics to chemoprevention. Uses of genomics databases in discovery of chemopreventive agents and in designing chemopreventive strategies are surveyed (Chapter 7). Surrogate endpoint biomarkers for breast cancer based on functional genomics are described (Chapter 8), as are applications of proteomics in clinical cancer settings (Chapter 9) and interpretation of genome-based data (Chapter 10).

Determining which populations will likely benefit from chemopreventive intervention, particularly those who are asymptomatic, is a significant challenge and an opportunity for chemoprevention. Two approaches are laid out in this volume. One is the construction of multifactorial models of absolute risk, based primarily on epidemiological statistics (Chapter 11). The second explores the correlation of genetic polymorphisms to cancer susceptibility (Chapter 12). The remaining two chapters in Part I examine some practical aspects of clinical evaluation of chemopreventive agents—i.e., clinical trial design issues (Chapter 13) and subject recruitment (Chapter 14).

For each cancer target organ covered in Part II, one chapter provides an overview of carcinogenesis in the target organ, including cancer and precancer incidences, genetic progression, and risk factors, along with potential opportunities for chemoprevention. Known and promising chemopreventive agents, surrogate endpoints, and clinical trial designs are summarized. For a number of these targets, additional chapters address specific topics that contribute to chemoprevention strategies.

In addition to an overview of strategies for prostate cancer chemoprevention (Chapter 15), a second chapter addresses the controversial topic of using prostate-specific antigen for determining risk and monitoring the progression of prostate cancer (Chapter 16). The overview of breast cancer chemoprevention focuses on defining populations at risk based on evidence of early genetic progression (Chapter 17) and is accompanied by two supplemental chapters. One describes development of ductal lavage as a technique for sampling breast cells in assessment of early neoplasia (Chapter 18), and the second addresses the well-recognized need to control estrogenic activity in suppressing breast carcinogenesis (Chapter 19). Quite possibly, the most significant advances in clinical chemoprevention have been made against colorectal carcinogenesis (Chapter 20) where genetic and histopathological progression of early dysplasia to adenoma to cancer has been well-studied. An additional important preventive strategy in colon is screening for and excision of adenomas (Chapter 21). Chapter 22 provides an overview of lung cancer chemoprevention accompanied by an article on topical delivery as a strategy to allow administration of drugs to lung that may be too toxic for systemic administration (Chapter 23); topical administration is also a promising strategy in other accessible targets such as skin, oral cavity, colon and cervix.

The review of bladder cancer chemoprevention (Chapter 24) focuses on the potential use of chemopreventive drugs to stop the recurrence of superficial bladder cancers; this cohort is at very high risk for recurrence and progression, and a successful chemopreventive intervention could be expected to provide clinical benefit from organ preservation (by delaying or reducing the need for surgery). Chapters on the esophagus discuss prevention and delay of progression of Barrett’s esophagus, a precursor to adenocarcinoma and an increasing risk factor for esophageal cancer in western populations (Chapter 25), as well as prevention of squamous cell carcinoma (Chapter 27). A third chapter looks at sophisticated new techniques for imaging esophageal dysplasia (Chapter 26). The high rate of second primary tumor formation has been well-documented for the head and neck, which have been studied for more than 20 years as a site for chemoprevention (Chapter 28). Recently, aneuploidy and other biomarkers of genetic progression have been carefully documented as risk and prognostic indicators of head and neck carcinogenesis and potential endpoints for chemoprevention studies (Chapter 29). Incidences of non-melanoma skin cancer are higher by far than any other cancer, and melanoma incidence is increasing (Chapter 30). In addition to oral and topical small molecule drug treatments for prevention and treatment of non-melanoma precursor lesions (actinic keratoses, basal cell nevus syndrome), opportunities exist for novel immunotherapies in skin carcinogenesis and vaccination against melanoma (Chapter 31).

Screening for and surgical removal of suspect CIN is well established, and drugs have shown activity in reducing CIN severity (Chapter 32). Moreover, human papillomavirus infection is strongly associated with onset of cervical cancer, and immunoprevention strategies (both treatment and prophylactic) are under development for populations at risk (Chapter 33). Thus far, chemoprevention strategies in endometrium have not been established; however, remarkable advances have been made in documenting and quantifying carcinogenesis-associated changes in endometrial tissue that provide opportunities for preventive intervention (Chapter 34). In ovary (Chapter 35), pancreas (Chapter 36), liver (Chapter 37), and multiple myeloma (Chapter 38), precancerous lesions that may be targets for chemoprevention
are suggested, along with potentially effective chemopreventive drugs.

The two volumes of Cancer Chemoprevention demonstrate that the science of chemoprevention research is solidly established, very active, and offers great promise for lessening the burden of human cancer. Progress in building and understanding genetic/molecular progression models of many human cancers based on seminal work described by Vogelstein and colleagues for the adenoma-carcinoma sequence in colon cancer (37) has been substantial and is being enhanced by newer and better animal models. Understanding molecular progression leads to synthesis and discovery of new molecularly targeted agents with high promise of efficacy that, once evaluated for safety, will have an impact on cancer incidence and mortality. The evaluation of drug effect and drug efficacy biomarkers along with better technologies for their measurement is progressing, and the science and utility of surrogate endpoint biomarkers in developing cancer chemopreventive agents against sporadic cancers are solidly established. The issue of validation is a relative one, and IEN is validated for most target organs sufficiently to establish that its prevention/removal provides clinical benefit. With rigorous attention to methodology and to emerging scientific data and new technologies, there is every expectation that new surrogate endpoint biomarkers will now be developed in the context of IEN. These new surrogate endpoint biomarkers will improve the efficiency of clinical chemopreventive agent development, better identify those patients (subjects) who are likely to benefit (or not to benefit), while also opening the door to even earlier identification of individuals at risk (e.g., those with premalignant molecular lesions that occur prior to IEN). The rapid pace at which systems biology and new technologies are evolving will make surrogate endpoint biomarker science a very productive and exciting area, but will also evoke the need for careful validation of such markers in the context of clinical trials.

Prospects are bright that surrogate endpoint biomarkers will make cancer chemoprevention studies more efficient and informative; however, hard work and exceptional dedication to sound, standardized methods will be required to assure that the application of these efforts in developing chemopreventive drugs is fruitful. The eventual acceptance of surrogate endpoint biomarkers may entail more than scientific rationale. Scientific and regulatory policy changes may also be required (e.g., 38). It is often observed that candidate surrogate endpoint biomarkers are expressed at higher incidences than the symptomatic clinical disease that they approximate. Such will always be the case when completely unrelated endpoints (other causes of death) do not allow carcinogenesis to go to completion. Based on existing disease models, it is likely that all high-grade IEN-carrying confirmed genetic lesions would end in cancer if the host lived long enough (12,32). Validation, like causality, is a relative term that only becomes absolute when all variables and elements of a process are known and can be studied quantitatively. It is undesirable and short-sighted to require any data more rigorous than validation based on probabilistic estimates that are consistent with current medical and regulatory practice. Based on existing knowledge, we can assume that IEN and the earlier biomarkers within IEN are on one or more of the possible causal pathways to carcinogenesis. Because they sometimes precede the cancer endpoint by several years, there is potential for interference, diversion, role in other biological processes, etc., that would keep these events from being ideal surrogate endpoint biomarkers. However, intervention to treat or prevent could be shown to provide clinical benefit, much like lipid-lowering in cardiovascular disease and viral load reduction in AIDS (27,39). If interventions show compelling efficacy against surrogate endpoint biomarkers and can be administered safely to populations at risk, it would seem prudent to formulate scientific and regulatory policy changes allowing the use of these biomarkers in evaluating interventions that would lead to more efficient drug approvals to prevent this dread disease.

Gary J. Kelloff, MD
Ernest T. Hawk, MD, MPH
Caroline C. Sigman, PhD

REFERENCES

CONTENTS

Preface .. v
Contributors .. xv
Value-Added eBook/PDA ... xix
Color Plates .. xxi

PART I. CHEMOPREVENTIVE AGENT DEVELOPMENT SCIENCE
1 Characterization of Natural Product Chemopreventive Agents 3
 John M. Pezzuto, Jerome W. Kosmeder II, Eun-Jung Park, Sang Kook Lee, Muriel Cuendet,
 Joell Gills, Krishna Bhat, Simonida Grubjesic, Hye-Sung Park, Eugenia Mata-Greenwood,
 Ying-Mei Tan, Rong Yu, Daniel D. Lantvit, and A. Douglas Kinghorn
2 Preclinical Animal Models for the Development of Cancer Chemoprevention Drugs .. 39
 Vernon E. Steele, Ronald A. Lubet, and Richard C. Moon
3 Potential Use of Transgenic Mice in Chemoprevention Studies 47
 Ronald A. Lubet, Jeffrey Green, Vernon E. Steele, and Ming You
4 Modeling Human Colorectal Cancer in Mice for Chemoprevention Studies 57
 Martin Lipkin and Sergio A. Lamprecht
5 Pathology of Incipient Neoplasia ... 69
 Donald Earl Henson and Jorge Albores-Saavedra
6 Quantitative Nuclear Grade: Clinical Applications of the Quantitative Measurement
 of Nuclear Structure Using Image Analysis .. 97
 Robert W. Veltri, Alan W. Partin, and M. Craig Miller
7 Enabling Discovery Through Online Cancer Genome Databases and Analytic Tools 109
 Robert L. Strausberg and Gregory J. Riggins
8 Functional Genomics for Identifying Surrogate Endpoint Biomarkers in Breast Cancer Chemoprevention 115
 Melissa A. Troester and Charles M. Perou
9 Clinical Applications of Proteomics ... 123
 Emanuel F. Petricoin III and Lance A. Liotta
10 Bioinformatics and Whole-Genome Technologies .. 131
 Richard Simon
11 Models of Absolute Risk: Uses, Estimation, and Validation ... 137
 Mitchell H. Gail
12 Genetic Polymorphisms and Risk Assessment for Cancer Chemoprevention 141
 Sonia de Assis and Peter G. Shields
13 Design Issues in Prostate Cancer Chemoprevention Trials: Lessons From the Prostate Cancer
 Prevention Trial ... 153
 Ian M. Thompson and Charles A. Coltman Jr.
14 Recruitment Strategies for Cancer Prevention Trials ... 163
 Paul P. Carbone, Karen Sielaff, Mary Hamielec, and Howard Bailey

PART II. CANCER CHEMOPREVENTION AT MAJOR CANCER TARGET SITES

PROSTATE
15 Prostate Cancer Prevention .. 185
 William G. Nelson, Angelo M. de Marzo, and Scott M. Lippman
16 Use of PSA to Evaluate Risk and Progression of Prostate Cancer 205
 Bulent Akduman, Abelardo Errejon, and E. David Crawford
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Clinical Approaches to Discovering and Testing New Breast Cancer Prevention Drugs</td>
<td>213</td>
<td>Carol J. Fabian, Bruce F. Kimler, Matthew S. Mayo, William E. Grizzle, Shahla Masood, and Giske Ursin</td>
</tr>
<tr>
<td>18</td>
<td>Ductal Lavage: Its Role in Breast Cancer Risk Assessment and Risk Reduction</td>
<td>239</td>
<td>Joyce O’Shaughnessy and Andrea Decensi</td>
</tr>
<tr>
<td>19</td>
<td>Counteracting Estrogen as Breast Cancer Prevention</td>
<td>249</td>
<td>Kathrin Strasser-Weippl and Paul E. Goss</td>
</tr>
<tr>
<td>20</td>
<td>Chemoprevention of Colorectal Cancer: Clinical Strategies</td>
<td>267</td>
<td>Monica M. Bertagnolli and Stanley R. Hamilton</td>
</tr>
<tr>
<td>21</td>
<td>Screening in Risk Evaluation and Prevention of Colorectal Cancer</td>
<td>287</td>
<td>Bernard Levin</td>
</tr>
<tr>
<td>22</td>
<td>Strategies in Lung Cancer Chemoprevention</td>
<td>297</td>
<td>Edward S. Kim, Faye M. Johnson, Waun Ki Hong, and Fadlo R. Khuri</td>
</tr>
<tr>
<td>23</td>
<td>Lung Cancer Chemoprevention: An Opportunity for Direct Drug Delivery</td>
<td>305</td>
<td>James L. Mulshine and Luigi M. De Luca</td>
</tr>
<tr>
<td>24</td>
<td>Bladder Cancer: Clinical Strategies for Cancer Chemoprevention</td>
<td>315</td>
<td>H. Barton Grossman, Anita L. Sabichi, and Yu Shen</td>
</tr>
<tr>
<td>25</td>
<td>Barrett’s Esophagus: Strategies for Cancer Prevention</td>
<td>325</td>
<td>Brian J. Reid</td>
</tr>
<tr>
<td>26</td>
<td>Endoscopic Detection of Esophageal Neoplasia</td>
<td>343</td>
<td>Brian C. Jacobson and Jacques Van Dam</td>
</tr>
<tr>
<td>27</td>
<td>Chemoprevention Strategies for Esophageal Squamous Cell Carcinoma</td>
<td>353</td>
<td>Paul J. Limburg, Philip R. Taylor, and Sanford M. Dawsey</td>
</tr>
<tr>
<td>28</td>
<td>Chemoprevention of Upper Aerodigestive Tract Cancer: Clinical Trials and Future Directions</td>
<td>371</td>
<td>Fadlo R. Khuri, Edward S. Kim, and Waun Ki Hong</td>
</tr>
<tr>
<td>30</td>
<td>Strategies in Skin Cancer Chemoprevention</td>
<td>403</td>
<td>M. Suzanne Stratton, Steven P. Stratton, James Ranger-Moore, Janine G. Einspahr, G. Tim Bowden, and David S. Alberts</td>
</tr>
<tr>
<td>31</td>
<td>Opportunities and Challenges for Skin Cancer Chemoprevention</td>
<td>421</td>
<td>Jaye L. Viner, Ernest T. Hawk, Ellen Richmond, Howard Higley, and Asad Umar</td>
</tr>
<tr>
<td>32</td>
<td>Progress in Developing Effective Chemoprevention Agents for Cervical Neoplasia</td>
<td>437</td>
<td>Ronald D. Alvarez, William E. Grizzle, Heidi L. Weiss, Clinton J. Grubbs, and Amit Oza</td>
</tr>
<tr>
<td>33</td>
<td>Immunoprevention of Cervical Cancer</td>
<td>449</td>
<td>John T. Schiller and Douglas R. Lowy</td>
</tr>
</tbody>
</table>
ENDOMETRIUM
34 Objective Biomarkers in Endometrioid-Type Endometrial Carcinogenesis .. 463

OVARY
35 Epithelial Ovarian Cancer .. 473
Kristin K. Zorn, Ginger J. Gardner, and Michael J. Birrer

PANCREAS
36 Strategies for Chemoprevention in Pancreatic Cancer ... 489
Chandrajit P. Raut, David J. McConkey, and James L. Abbruzzese

LIVER
37 Clinical Strategies for Chemoprevention of Liver Cancer ... 503
Ziad Hassoun and Gregory J. Gores

MULTIPLE MYELOMA
38 Chemoprevention: A New Paradigm for Managing Patients With Smoldering/Indolent Myeloma and High-Risk MGUS .. 519
John A. Lust and Kathleen A. Donovan

Index ... 529
CONTRIBUTORS

STÉRIN AAMDAL, MD, PhD • Department of Clinical Cancer Research, Norwegian Radium Hospital, Oslo, Norway
JAMES L. ABBRUZZESE, MD • Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
BULENT AKDUMAN, MD • Department of Urology, Zonguldak Karaelmas University School of Medicine, Zonguldak, Turkey
DAVID S. ALBERTS, MD • Arizona Cancer Center, University of Arizona, Tucson, AZ
JORGE ALBORES-SAAVEDRA, MD • Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA
RONALD D. ALVAREZ, MD • Division of Gynecologic Oncology; Gene Therapy Center; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
JAN P. A. BAAK, MD, PhD, FRCPath, FIC(antwerp) • Department of Pathology, Central Hospital in Rogaland, Stavanger, Norway; Yader Institute, University of Bergen, Bergen, Norway; Free University, Amsterdam, The Netherlands
HOWARD BAILEY, MD • University of Wisconsin Comprehensive Cancer Center and Medical Oncology Section, Department of Medicine, University of Wisconsin Medical School, Madison, WI
MONICA M. BERGAGNOLI, MD • Brigham and Women’s Hospital, Dana Farber-Harvard Cancer Center, Boston, MA
KRISHNA BHAT, MD • Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
MICHAEL J. BIRRR, MD, PhD • Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
G. TIM BOWDEN, PhD • Arizona Cancer Center, University of Arizona, Tucson, AZ
CURT BURGER, MD, PhD • Erasmus University Medical Center, Rotterdam, The Netherlands
PAUL P. CARBONE, MD (deceased) • University of Wisconsin Comprehensive Cancer Center and Medical Oncology Section, Department of Medicine, University of Wisconsin Medical School, Madison, WI
CHARLES A. COLTMAN JR., MD • Division of Urology, The Southwest Oncology Group and the San Antonio Cancer Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX
E. DAVID CRAWFORD, MD • Section of Urological Oncology, University of Colorado School of Medicine, Denver, CO
MURIEL CUEDET, PhD • Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
SANFORD M. DAWSEY, MD • Cancer Prevention Studies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
SONIA DE ASSIS • Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC
ANDREA DECENSI, MD • Division of Chemoprevention, European Institute of Oncology, Milan, Italy
LUIGI M. DE LUCA, PhD • Differentiation Control Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bethesda, MD
KATHLEEN A. DONOVAN, PhD • Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN
JANINE G. ENSPHAR, MS • Arizona Cancer Center, University of Arizona, Tucson, AZ
ABELARDO ERREON, MD • Section of Urological Oncology, University of Colorado School of Medicine, Denver, CO
CAROL J. FABIAN, MD • Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
BENT FLAFE, MD • Central Hospital in Rogaland, Stavanger, Norway
MITCHELL H. GAFF, MD, PhD • Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
GINGER J. GARDNER, MD • Kelly Gynecologic Oncology Section, The Johns Hopkins Hospital, Baltimore, MD
JOEL GILLS, PhD • Cancer Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
Contributors

GREGORY J. GORES, MD • Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
PAUL E. GOSS, MD, PhD, FRCPC, FRCPC(UK) • Princess Margaret Hospital, University Health Network, Toronto, Canada
JEFFREY GREEN, MD • Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institutes, National Institutes of Health, Bethesda, MD
WILLIAM E. GRIZZLE, MD, PhD • Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
H. BARTON GROSSMAN, MD • Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX
CLINTON J. GRUBBS, PhD • Chemoprevention Center; Department of Surgery, University of Alabama Medical School, Birmingham, AL
SIMONIDA GRUBIESIC, PhD • Department of Biomedical Engineering, Northwestern University, Evanston, IL
MARY HAMIELEC, BA • University of Wisconsin Comprehensive Cancer Center, University of Wisconsin Medical School, Madison, WI
STANLEY R. HAMILTON, MD • Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
ZIAD HASSOUN, MD • Centre de Recherche du CHUM, Hôpital Saint Luc, Montreal, Canada
ERNEST T. HAWK, MD, MPH • Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
TOVE HELLIESSEN, MD • Department of Pathology, Central Hospital in Rogaland, Stavanger, Norway
DONALD EARL HENSON, MD • Department of Pathology, Office of Cancer Prevention and Control, George Washington University Cancer Institute, Washington, DC
HOWARD HIGLEY, PhD, DABT • CCS Associates, Mountain View, CA
WAUN KI HONG, MD • Division of Cancer Medicine, Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
BRIAN C. JACOBSON, MD, MPH • Center for Digestive Disorders, Boston Medical Center, Boston, MA
FAYE M. JOHNSON, MD, PhD • Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
GARY J. KELLOFF, MD • Biomedical Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
PETER J. KENEMANS, MD, PhD • VU Medical Center, Amsterdam, The Netherlands
FADLO R. KHURI, MD • Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
EDWARD S. KIM, MD • Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
BRUCE F. KIMLER, PhD • Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS
A. DOUGLAS KINGHORN, PhD, DSC • Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH
KJELL-HENNING KJELLEVOLD, MD • Department of Pathology, Central Hospital in Rogaland, Stavanger, Norway
JEROME W. KOSMEDER II, PhD • Ventana Medical Systems Inc., Tucson, AZ
SERGIO A. LAMPRECHT, PhD • Strang Cancer Research Laboratory at the Rockefeller University, New York, NY
DANIEL D. LANTVIT • Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
SANG KOOK LEE, PhD • College of Pharmacy, Ewha Womans University, Seoul, Korea
BERNARD LEVIN, MD • Division of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX
PAUL J. LIMBURG, MD, MPH • Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
LANCE A. LIOTTA, MD, PhD • FDA-NCI Clinical Proteomics Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
MARTIN LIPKIN, MD • Strang Cancer Research Laboratory at The Rockefeller University, New York, NY
SCOTT M. LIPPMAN, MD • Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
KJELL LOVSLETT, MD • Department of Gynecology, Central Hospital in Rogaland, Stavanger, Norway
DOUGLAS R. LOWY, MD • Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
RONALD A. LUBET, PHD • Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD

JOHN A. LUST, MD, PHD • Hematology Research; Tumor Biology Program, Mayo Clinic College of Medicine, Rochester, MN

ANGELO M. DE MARZO, MD, PHD • Departments of Oncology, Pathology, and Urology, The Johns Hopkins University School of Medicine, Baltimore, MD

SHAHLA MASOOD, MD • Department of Pathology, University of Florida Health Science Center at Shands Jacksonville, Jacksonville, FL

EUGENIA MATA-GREENWOOD, PHD • Division of Pediatric Research, Northwestern University, Evanston, IL

MATTHEW S. MAYO, PHD • Kansas Masonic Cancer Research Institute and Department of Preventive Medicine and Public Health, University of Kansas Medical Center, Kansas City, KS

DAVID J. McConkey, PHD • Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX

M. CRAIG MILLER • Quakertown, PA

RICHARD C. MOON, PHD • School of Pharmacy, Purdue University, West Lafayette, IN

JAMES L. MULSHINE, MD • Intervention Section, Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

GEORGE L. MUTTER, MD • Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

WILLIAM G. NELSON, MD, PHD • Departments of Oncology, Pathology, and Urology, The Johns Hopkins University School of Medicine, Baltimore, MD

JOYCE O’SHAUGHNESSY, MD • Breast Cancer Research, Baylor Charles A. Sammons Cancer Center, Dallas, TX

AMIT OZA, MD • Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada

EUN-JUNG PARK, PHD • Developmental Therapeutics Program, Tumor Hypoxia Laboratory, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD

HYE-SUNG PARK • Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL

ALAN W. PARTIN, MD, PHD • Department of Urology, Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD

CHARLES M. PEROU, PHD • Lineberger Comprehensive Cancer Center, Departments of Genetics and of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC

EMANUEL F. PETRICOIN III, PHD • FDA-NCI Clinical Proteomics Program, Division of Therapeutic Proteins, Center for Biologic Evaluation and Research, Food and Drug Administration, Washington, DC

JOHN M. PEZZUTO, PHD • School of Pharmacy, Purdue University, West Lafayette, IN

JAMES RANGER-MOORE • Arizona Cancer Center, University of Arizona, Tucson, AZ

CHANDRAJIT P. RAUT, MD • Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX

BRIAN J. REID, MD, PHD • Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA

ALBRECHT REITH, MD, PHD, MIAC • Department of Pathology, Norwegian Radium Hospital, Oslo, Norway

ELLEN RICHMOND, MS, RN • Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD

GREGORY J. RIGGINS, MD, PHD • Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD

ANITA L. SABICHI, MD • Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX

JOHN T. SCHILLER, PHD • Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

YU SHEN, PHD • Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX

PETER G. SHIELDS, MD • Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC

KAREN SIELAFF, BSN • University of Wisconsin Comprehensive Cancer Center, University of Wisconsin Medical School, Madison, WI

CAROLINE C. SIGMAN, PHD • CCS Associates, Mountain View, CA
RICHARD SIMON, DSc • Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
VERNON E. STEELE, PhD, MPH • Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
ANITA STEINBAKK • Department of Gynecology, Central Hospital in Rogaland, Stavanger, Norway
KATHRIN STRASSER-WEIPPL, MD • First Medical Department with Medical Oncology, Wilhelminen Hospital, Vienna, Austria
M. SUZANNE STRATTON, PhD • Arizona Cancer Center, University of Arizona, Tucson, AZ
STEVEN P. STRATTON, PhD • Arizona Cancer Center, University of Arizona, Tucson, AZ
ROBERT L. STRAUSBERG, PhD • Vice President for Research, The Institute for Genomic Research, Rockville, MD
ASLE SUDBØ, ScD, PhD • Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
JON SUDBØ, DDS, MD, PhD • Departments of Medical Oncology and Radiotherapy, Norwegian Radium Hospital, Oslo, Norway
LULY TADELE, MD • Department of Pathology, Central Hospital in Rogaland, Stavanger, Norway
YINGMEI TAN, PhD • Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
PHILIP R. TAYLOR, MD, ScD • Cancer Prevention Studies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
IAN M. THOMPSON, MD • Division of Urology, The Southwest Oncology Group and the San Antonio Cancer Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX
MELISSA A. TROESTER, PhD • Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
ASAD UMAR, PhD, DVM • Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
GISKE URSIN, MD, PhD • Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, Los Angeles, CA; Department of Nutrition, University of Oslo, Oslo, Norway
JACQUES VAN DAM, MD, PhD • Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA
BLANCA VAN DIERMEN, MA • Department of Pathology, Central Hospital in Rogaland, Stavanger, Norway
PAUL J. VAN DIEST, MD, PhD • University Medical Center, Utrecht, The Netherlands
ROBERT W. VELTRI, PhD • Brady Urological Institute, Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
RENEE VERHEIJEN, MD, PhD • Department of Gynecology, VU Medical Center, Amsterdam, The Netherlands
JAYE L. VENER, MD, MPH • Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
HEIDI L. WEISS, PhD • Breast Center, Baylor University, Houston, TX
MING YOU, MD, PhD • The Siteman Cancer Center; Division of General Surgery, Washington University School of Medicine, St. Louis, MO
RONG YU, PhD • Medical School, The University of Texas Health Science Center at Houston, Houston, TX
KRISTIN K. ZORN, MD • Department of Cell and Cancer Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
Color Plates

Color Plates follow pp. 106 and 266.

Color Plate 1. *Fig. 2, Chapter 6:* Determining a QNG solution for cytology/histology specimens (see discussion on pp. 98–99 and complete caption on p. 100).

Color Plate 2. *Fig. 3, Chapter 6:* Three bladder cells converted to 2D/3D images (see discussion on p. 99–100 and complete caption on p. 101).

Color Plate 3. *Fig. 2, Chapter 7:* SAGE Genie Anatomic Viewer display of erbB2 gene expression in normal tissue and in tumors (see discussion on pp. 111–112 and complete caption on p. 112).

Fig. 3, Chapter 7: SAGE Genie Anatomic Viewer display of prostate-specific Ets factor expression (A) and expression in individual SAGE libraries (B). See discussion and complete captions on pp. 112–113.

Color Plate 4. *Fig. 1, Chapter 8:* Eighty-five samples analyzed with the 476 “intrinsic” clone set (see discussion on pp. 117, 119 and complete caption on p. 118). With permission.

Fig. 2, Chapter 8: Fifty-one patients treated using gene expression-based tumor groupings (see discussion and complete captions on p. 119).

Color Plate 5. *Fig. 1, Chapter 26:* Columnar-lined mucosa in Barrett’s esophagus (see discussion on p. 343 and complete caption on p. 344).

Fig. 3, Chapter 26: High-grade dysplasia in BE by chromoendoscopy (see discussion and complete caption on p. 347).

Color Plate 6. *Fig. 4, Chapter 26:* (A) OCT probe in upper endoscopy; (B–D) esophageal layers at 10 μm. (See discussion on pp. 348 and full caption on p. 349.)

Fig. 4, Chapter 29: Moderate (A–B) and mild (C) dysplasia: DNA ploidy and histological findings (see discussion on p. 388 and complete caption on p. 389). With permission.

Color Plate 7. *Fig. 6, Chapter 29:* Voronoi diagrams used to quantify cellular interactions in tissues (see discussion on p. 391–392 and full caption on p. 392).

Color Plate 8. *Fig. 1, Chapter 34:* Routine laboratory presentation to requesting clinician of computerized morphometric analysis identifying a multivariate combination of architectural and nuclear features (DS). (See discussion and full caption on p. 465.)

Fig. 2, Chapter 34: Endometrial epithelial neoplasia reported by DS as high risk (see discussion on pp. 465–466 and full caption on p. 466).
This book is accompanied by a value-added CD-ROM that contains an eBook version of the volume you have just purchased. This eBook can be viewed on your computer, and you can synchronize it to your PDA for viewing on your handheld device. The eBook enables you to view this volume on only one computer and PDA. Once the eBook is installed on your computer, you cannot download, install, or e-mail it to another computer; it resides solely with the computer to which it is installed. The license provided is for only one computer. The eBook can only be read using Adobe® Reader® 6.0 software, which is available free from Adobe Systems Incorporated at www.Adobe.com. You may also view the eBook on your PDA using the Adobe® PDA Reader® software that is also available free from Adobe.com.

You must follow a simple procedure when you install the eBook/PDA that will require you to connect to the Humana Press website in order to receive your license. Please read and follow the instructions below:

1. Download and install Adobe® Reader® 6.0 software
 You can obtain a free copy of the Adobe® Reader® 6.0 software at www.adobe.com
 *Note: If you already have the Adobe® Reader® 6.0 software installed, you do not need to reinstall it.
2. Launch Adobe® Reader® 6.0 software
3. Install eBook: Insert your eBook CD into your CD-ROM drive
 PC: Click on the “Start” button, then click on “Run”
 At the prompt, type “d:ebookinstall.pdf” and click “OK”
 *Note: If your CD-ROM drive letter is something other than d: change the above command accordingly.
 MAC: Double click on the “eBook CD” that you will see mounted on your desktop.
 Double click “ebookinstall.pdf”
4. Adobe® Reader® 6.0 software will open and you will receive the message
 “This document is protected by Adobe DRM” Click “OK”
 *Note: If you have not already activated the Adobe® Reader® 6.0 software, you will be prompted to do so. Simply follow the directions to activate and continue installation.

Your web browser will open and you will be taken to the Humana Press eBook registration page. Follow the instructions on that page to complete installation. You will need the serial number located on the sticker sealing the envelope containing the CD-ROM.

If you require assistance during the installation, or you would like more information regarding your eBook and PDA installation, please refer to the eBookManual.pdf located on your CD. If you need further assistance, contact Humana Press eBook Support by e-mail at ebooksupport@humanapr.com or by phone at 973-256-1699.

Adobe and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.