Protein–Protein Interactions
286. Transgenic Plants: Methods and Protocols, edited by Leandro Peña, 2004
285. Cell Cycle Control and Dysregulation Protocols: Cyclins, Cyclin-Dependent Kinases, and Other Factors, edited by Antonio Giordano and Gaetano Romano, 2004
282. Apoptosis Methods and Protocols, edited by Hugh J. M. Brady, 2004
277. Trinucleotide Repeat Protocols, edited by Yoshinori Kohwi, 2004
276. Capillary Electrophoresis of Proteins and Peptides, edited by Mark A. Strege and Avinash L. Lagu, 2004
275. Chemoinformatics, edited by Jürgen Bajorath, 2004
274. Photosynthesis Research Protocols, edited by Robert Carpenter, 2004
271. B Cell Protocols, edited by Hua Gu and Klaus Rajewsky, 2004
266. Genomics, Proteomics, and Clinical Bacteriology: Methods and Reviews, edited by Neil Woodford and Alan Johnson, 2004
265. RNA Interference, Editing, and Modification: Methods and Protocols, edited by Jonathan M. Gott, 2004
264. Protein Arrays: Methods and Protocols, edited by Eric Fung, 2004
262. Genetic Recombination Protocols, edited by Alan S. Waldman, 2004
261. Protein–Protein Interactions: Methods and Protocols, edited by Heide Schatten, 2004
257. mRNA Processing and Metabolism: Methods and Protocols, edited by Daniel R. Schoenberg, 2004
251. HPLC of Peptides and Proteins: Methods and Protocols, edited by Marie-Isabel Aguilar, 2004
250. MAP Kinase Signaling Protocols, edited by Rony Seger, 2004
249. Cytokine Protocols, edited by Marc De Ley, 2004
Protein–Protein Interactions

Methods and Applications

Edited by

Haian Fu

Department of Pharmacology
Emory University School of Medicine, Atlanta, GA
Preface

As the mysteries stored in our DNA have been more completely revealed, scientists have begun to face the extraordinary challenge of unraveling the intricate network of protein–protein interactions established by that DNA framework. It is increasingly clear that proteins continuously interact with one another in a highly regulated fashion to determine cell fate, such as proliferation, differentiation, or death. These protein–protein interactions enable and exert stringent control over DNA replication, RNA transcription, protein translation, macromolecular assembly and degradation, and signal transduction; essentially all cellular functions involve protein–protein interactions. Thus, protein–protein interactions are fundamental for normal physiology in all organisms. Alteration of critical protein–protein interactions is thought to be involved in the development of many diseases, such as neurodegenerative disorders, cancers, and infectious diseases. Therefore, examination of when and how protein–protein interactions occur and how they are controlled is essential for understanding diverse biological processes as well as for elucidating the molecular basis of diseases and identifying potential targets for therapeutic interventions.

Over the years, many innovative biochemical, biophysical, genetic, and computational approaches have been developed to detect and analyze protein–protein interactions. This multitude of techniques is mandated by the diversity of physical and chemical properties of proteins and the sensitivity of protein–protein interactions to cellular conditions. In order to provide scientists with practical tools to address their vital biological questions in the post-genome era, Protein–Protein Interactions: Methods and Applications presents a collection of frequently employed techniques for identifying protein interaction partners, qualitatively or quantitatively measuring protein–protein interactions in vitro or in vivo, monitoring protein–protein interactions as they occur in living cells, and determining interaction interfaces. It is hoped that this book will be useful to a broad spectrum of researchers who are interested in studying protein–protein interactions in various systems.

Protein–Protein Interactions: Methods and Applications consists of five sections. It begins with two concise overviews of the fundamental principles of protein–protein interactions. They illustrate the structural diversity of protein interactions and some common experimental design considerations that
are important for quantification of these interactions. Part Two describes a wide range of biochemical and biophysical methods for detecting and measuring protein–protein interactions in vitro. Commonly used spectroscopic, electrophoretic, and affinity matrix–based techniques are presented, many of which allow quantitative analysis of protein–protein interactions. This section ends with tools for analyzing structural interfaces and the design of peptide inhibitors of protein interactions. Advances in genetics and molecular biology have revolutionized the way that we study protein–protein interactions. Part Three reflects these changes and covers popular methods for studying protein–protein interactions in heterologous cell systems, including various bacterial, yeast, and mammalian two-hybrid systems and co-immunoprecipitation studies. These methods provide a simple solution for analyzing protein–protein interactions in an in vivo environment. Part Four presents state of the art methodologies to monitor protein–protein interactions in living cells, including applications using the fluorescence resonance energy transfer (FRET) technology. These approaches share a common bond in that they allow the capture and visualization of protein–protein interactions as they occur. In the post-genome age, it is expected that conventional methods for studying protein–protein interactions will still play an important role. However, it is hoped that proteomics and bioinformatics-based approaches will be rapidly developed to study protein–protein interactions on a large scale. Part Five begins to address this issue, focusing on high-throughput methods and computational approaches. This section ends with a tutorial on using Internet resources, which serves as a springboard to additional information and techniques for studying protein–protein interactions.

Both basic and clinical researchers will find this book valuable for its broad coverage from simple affinity-based pull-down assays to cutting edge technologies such as FRET and solid-phase isotope tagging–based mass spectrometry. The basic theory and practical application of these widely used, representative methods are described in detail by experienced researchers. Examples are also incorporated to illustrate each method, along with notes and explanations for sensitive procedures and potential pitfalls. These features, together with our broad coverage of the topic, are designed to empower readers in their quest to decipher the functions of proteins and complex biological regulatory systems.

It is truly a great pleasure to put together a book on this important, exciting, and timely topic! I have been privileged to work with the many leaders in the protein–protein interaction field who willingly contributed their valuable time and effort to making this book possible. I am grateful to each of the contributors for their enthusiasm and tremendous efforts and to John Walker,
the series editor, and Craig Adams, James Geronimo, and all at Humana Press for their guidance. My sincere thanks go to Shane Masters, Keith Wilkinson, and Jonathan Cooper for their invaluable advice and suggestions and to Lisa Cockrell and Robert Fu for assistance in preparing this book. Finally, I express my deepest appreciation to Robert, Emily, and Guo-hua, who provide constant encouragement and support.

Haian Fu
Contents

Preface ... v
Contributors ... xiii

PART I. OVERVIEW

1 Structural Basis of Protein–Protein Interactions
 Robert C. Liddington ... 3

2 Quantitative Analysis of Protein–Protein Interactions
 Keith D. Wilkinson .. 15

PART II. IN VITRO TECHNIQUES

3 Characterization of Protein–Protein Interactions
 by Isothermal Titration Calorimetry
 Adrian Velazquez-Campoy, Stephanie A. Leavitt, and Ernesto Freire
... 35

4 Circular Dichroism Analysis for Protein–Protein Interactions
 Norma J. Greenfield .. 55

5 Protein–Protein Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy
 Guanghua Gao, Jason G. Williams, and Sharon L. Campbell 79

6 Measuring Rhodopsin–G-Protein Interactions
 by Surface Plasmon Resonance
 John Northup .. 93

7 Using Light Scattering to Determine the Stoichiometry
 of Protein Complexes
 Jeremy Mogridge .. 113

8 Sedimentation Equilibrium Studies
 Ian A. Taylor, John F. Eccleston, and Katrin Rittinger 119

9 Analysis of Protein–Protein Interactions by Simulation
 of Small-Zone Gel Filtration Chromatography
 Rosemarie Wilton, Elizabeth A. Myatt, and Fred J. Stevens 137

10 Fluorescence Gel Retardation Assay to Detect
 Protein–Protein Interactions
 Sang-Hyun Park and Ronald T. Raines ... 155
11 Fluorescence Polarization Assay to Quantify Protein–Protein Interactions
 Sang-Hyun Park and Ronald T. Raines ... 161

12 Studying Protein–Protein Interactions via Blot Overlay or Far Western Blot
 Randy A. Hall ... 167

13 Glutathione-S-Transferase–Fusion Based Assays for Studying Protein–Protein Interactions
 Haris G. Vikis and Kun-Liang Guan ... 175

14 Affinity Capillary Electrophoresis Analyses of Protein–Protein Interactions in Target-Directed Drug Discovery
 William E. Pierceall, Lixin Zhang, and Dallas E. Hughes 187

15 Mapping Protein–Ligand Interactions by Hydroxyl-Radical Protein Footprinting
 Nick Loizos ... 199

16 Use of Phage Display and Polyvalency to Design Inhibitors of Protein–Protein Interactions
 Michael Mourez and R. John Collier 213

PART III. DETECTING PROTEIN–PROTEIN INTERACTIONS IN HETEROLOGOUS SYSTEMS

17 A Bacterial Two-Hybrid System Based on Transcriptional Activation
 Simon L. Dove and Ann Hochschild 231

18 Using the Yeast Two-Hybrid System to Identify Interacting Proteins
 John Miller and Igor Stagljar ... 247

19 Analysis of Protein–Protein Interactions Utilizing Dual Bait Yeast Two-Hybrid System
 Ilya G. Serebriiskii and Elena Kotova 263

20 The Split-Ubiquitin Membrane-Based Yeast Two-Hybrid System
 Safia Thaminy, John Miller, and Igor Stagljar 297

21 Reverse Two-Hybrid Techniques in the Yeast Saccharomyces cerevisiae
 Matthew A. Bennett, Jack F. Shern, and Richard A. Kahn 313

22 Mammalian Two-Hybrid Assay for Detecting Protein–Protein Interactions In Vivo
 Jae Woon Lee and Soo-Kyung Lee .. 327

23 Co-Immunoprecipitation from Transfected Cells
 Shane C. Masters ... 337
PART IV: PROBING PROTEIN–PROTEIN INTERACTIONS IN LIVING CELLS

24 Microscopic Analysis of Fluorescence Resonance Energy Transfer (FRET)
 Brian Herman, R. Venkata Krishnan, and Victoria E. Centonze .. 351

25 Monitoring Molecular Interactions in Living Cells Using Flow Cytometric Analysis of Fluorescence Resonance Energy Transfer
 Francis Ka-Ming Chan ... 371

26 Fluorescence Correlation Spectroscopy: A New Tool for Quantification of Molecular Interactions
 Keith M. Berland .. 383

27 Confocal Microscopy for Intracellular Co-Localization of Proteins
 Toshiyuki Miyashita .. 399

28 Mapping Biochemical Networks with Protein-Fragment Complementation Assays
 Ingrid Remy and Stephen W. Michnick ... 411

29 In Vivo Protein Cross-Linking
 Fabrice Agou, Fei Ye, and Michel Véron .. 427

PART V. PROTEOMICS-BASED APPROACHES

30 Computational Prediction of Protein–Protein Interactions
 John C. Obenauer and Michael B. Yaffe ... 445

31 Affinity Methods for Phosphorylation-Dependent Interactions
 Greg Moorhead and Carol MacKintosh ... 469

32 Two-Dimensional Gel Electrophoresis for Analysis of Protein Complexes
 Karin Barnouin ... 479

33 Sample Preparation of Gel Electrophoretically Separated Protein Binding Partners for Analysis by Mass Spectrometry
 Rainer Cramer, Malcolm Saxton, and Karin Barnouin 499

34 Quantitative Protein Analysis by Solid Phase Isotope Tagging and Mass Spectrometry
 Huilin Zhou, Rosemary Boyle, and Ruedi Aebersold 511

35 Internet Resources for Studying Protein–Protein Interactions
 Shane C. Masters ... 519

Index .. 525
Contributors

RUEDI AEBERSOLD • Institute for Systems Biology, Seattle, WA
FABRICE AGOU • Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
KARIN BARNOUN • Department of Biochemistry and Molecular Biology, University College London and Ludwig Institute for Cancer Research, London, UK
MATTHEW A. BENNETT • Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
KEITH M. BERLAND • Physics Department, Emory University, Atlanta, GA
ROSEMARY BOYLE • Department of Genome Sciences, University of Washington, Seattle, WA
SHARON L. CAMPBELL • Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, NC
VICTORIA E. CENTONZE • Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX
FRANCIS KA-MING CHAN • Department of Pathology, University of Massachusetts Medical School, Worcester, MA
R. JOHN COLLIER • Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
RAINER CRAMER • Department of Biochemistry and Molecular Biology and Ludwig Institute for Cancer Research, University College London, London, UK
SIMON L. DOVE • Division of Infectious Diseases, Children’s Hospital, Harvard Medical School, Boston, MA
JOHN F. ECCLESTON • Division of Physical Biochemistry, National Institute for Medical Research, London, UK
ERNESTO FREIRE • Department of Biology and Biocalorimetry Center, Johns Hopkins University, Baltimore, MD
GUANGHUA GAO • Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, NC
NORMA J. GREENFIELD • Department of Neuroscience and Cell Biology, UMDNJ-Robert Johnson Medical School, Piscataway, NJ
KUN-LIANG GUAN • Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
RANDY A. HALL • Department of Pharmacology, Emory University, Atlanta, GA
BRIAN HERMAN • Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX
ANN HOCHSCHILD • Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
DALLAS E. HUGHES • Cetek Corporation, Marlborough, MA
RICHARD A. KAHN • Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
ELENA KOTOVA • Division of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA
R. V. KRISHNAN • Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX
STEPHANIE A. LEAVITT • Department of Biology and Biocalorimetry Center, Johns Hopkins University, Baltimore, MD
JAEE WOON LEE • Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
SOO-KYUNG LEE • Gene Expression Laboratory, The Salk Institute, San Diego, CA
ROBERT C. LIDDINGTON • The Burnham Institute, La Jolla, CA
NICK LOIZOS • Department of Protein Chemistry, ImClone Systems Inc., New York, NY
CAROL MACKINTOSH • Medical Research Council Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
SHANE C. MASTERS • Medical College of Georgia, Augusta, GA
STEPHENV W. MICHNICK • Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
JOHN MILLER • Department of Genome Sciences, University of Washington, Seattle, WA
TOSHIYUKI MIYASHITA • Department of Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
JEREMY MOGRIDGE • Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
GREG MOORHEAD • Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
MICHAEL MOUREZ • Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
ELIZABETH A. MYATT • Biosciences Division, Argonne National Laboratory, Argonne, IL
JOHN NORTHUP • Laboratory of Cellular Biology, NIDCD, National Institutes of Health, Rockville, MD
JOHN C. OBENAUER • Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
SANG-HYUN PARK • Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA
WILLIAM E. PIERCEALL • Cetek Corporation, Marlborough, MA
RONALD T. RAINES • Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, Madison, WI
INGRID REMY • Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
KATRIN RITTINGER • Division of Protein Structure, National Institute for Medical Research, London, UK
MALCOLM SAXTON • Ludwig Institute for Cancer Research, Royal Free and University College London, London, UK
ILYA G. SEREBSKIISKII • Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA
JACK F. SHERN • Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
IGOR STAGLIJAR • Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Zurich, Switzerland
FRED J. STEVENS • Biosciences Division, Argonne National Laboratory, Argonne, IL
IAN A. TAYLOR • Division of Protein Structure, National Institute for Medical Research, London, UK
SAFIA THAMINY • Institut of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Zuch, Switzerland
ADRIAN VELAZQUEZ-CAMPOY • Department of Biology and Biocalorimetry Center, Johns Hopkins University, Baltimore, MD
MICHEL VERON • Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
HARIS G. VIKIS • Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
KEITH D. WILKINSON • Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
JASON G. WILLIAMS • National Institute of Environmental Health Sciences, Research Triangle Park, NC
ROSEMARIE WILTON • Biosciences Division, Argonne National Laboratory, Argonne, IL
MICHAEL B. YAFFE • Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
FEI YE • Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
LIXIN ZHANG • Cetek Corporation, Marlborough, MA
HUILIN ZHOU • Department of Chemistry & Biochemistry, University of California-San Diego, San Diego, CA