Nitric Oxide Protocols
Nitric Oxide Protocols

Edited by

Michael A. Titheradge

University of Sussex, Brighton, UK
Preface

It is now recognized that nitric oxide (NO) plays an essential role in many biological systems, both as an inter- and intracellular signaling mechanism in such diverse areas as the vascular system, the immune system, and neural communication. In addition, overproduction of NO has also been implicated as a crucial factor in many pathological situations, particularly in inflammation, diabetes, stroke, neurodegeneration, and sepsis. The involvement of NO in physiological and pathological situations is now far-ranging, and interest in the biochemistry, physiology, and pharmacology of NO is still expanding rapidly. Therefore, it seems an appropriate time to produce a book containing protocols relevant to all workers in the nitric oxide field.

In Nitric Oxide Protocols I have attempted to gather together chapters from all areas of nitric oxide research and to provide detailed methods covering a very wide variety of techniques, including cloning, expression, and purification of the different NO synthase isoforms; quantitation of the rate of transcription and translation of NO synthases using RT-PCR, Northern, and Western blotting; quantitation of NO production itself both in vivo and in vitro; and direct measurement of the activity of NO synthase. In addition, a number of issues—such as the use NO donors, peroxynitrite, and NO gas to mimic endogenous NO production—have been included, together with chapters on the use of inhibitors of NO synthase and the measurement of nitrotyrosine residues in proteins, on DNA damage, and on apoptosis caused by NO production. Two chapters have also been included on the assay of GTP cyclohydrolase I activity and the measurement of biopterin, and since these are particularly relevant to NO production, on the use of inhibitors of biopterin biosynthesis. Throughout the book, the aim has been to highlight the merits of each assay or procedure and compare them with other available methods, and where possible a number of different alternative procedures are described. Potential problems and common errors encountered with each of these protocols have been highlighted, and in many cases the Introduction and Notes sections of related chapters provide a valuable source of information. The reader is therefore encouraged to browse through related chapters to extract the maximum benefit.

This book could not have been produced without the help and cooperation of all those authors who kindly contributed their chapters, and I should
like to thank them for their efforts. In particular I should like to thank Richard Knowles both for his chapters and also advice as to the content of the book. I should also like to thank the series editor, John Walker, for his rapid response and constant advice and encouragement throughout the preparation of the book.

Michael A. Titheradge
Contents

Preface ...
Contributors ..
1 Enzymology of Nitric Oxide Synthases

 Benjamin Hemmens and Bernd Mayer ... 1
2 Purification of the Inducible Nitric Oxide Synthase

 Edward P. Garvey .. 33
3 Purification of the Constitutive Nitric Oxide Synthase

 Edward P. Garvey .. 37
4 Cloning and Expression of Human Inducible Nitric Oxide Synthase

 Mark L. Johnson, Richard A. Shapiro, and Timothy R. Billiar 43
5 Cloning and Expression of Human eNOS and nNOS Using
 the Baculovirus-Insect Cell System

 Ian G. Charles, Neale Foxwell, and Ann Chubb ... 51
6 Assay of NOS Activity by the Measurement of Conversion
 of Oxyhemoglobin to Methemoglobin by NO

 Mark Salter and Richard G. Knowles .. 61
7 Measurement of NOS Activity by Conversion of Radiolabeled Arginine
 to Citrulline Using Ion-Exchange Separation

 Richard G. Knowles and Mark Salter .. 67
8 Radiochemical Measurement of NOS Activity by Conversion
 of [14C]-Arginine to Citrulline Using HPLC Separation

 James M. Cunningham and Richard C. Rayne .. 75
9 The Enzymatic Measurement of Nitrate and Nitrite

 Michael A. Titheradge ... 83
10 Determination of NOS Activity Using Cyclic-GMP Formation

 Suzanne G. Laychock .. 93
11 Determination of NO with a Clark-Type Electrode

 Kurt Schmidt and Bernd Mayer ... 101
12 The Measurement of NO in Biological Systems Using
 Chemiluminescence

 Evangelos D. Michelakis and Stephen L. Archer ... 111
13 Measurement of NO Using Electron Paramagnetic Resonance

 S. Tsuyoshi Ohnishi ... 129
14 Measurement of eNOS and iNOS mRNA Expression Using Reverse
 Transcription Polymerase Chain Reaction

 Norbert Reiling, Artur J. Ulmer, and Sunna Hauschildt 155
Contents

15 Measurement of NOS mRNA by Northern Blotting and the Ribonuclease-Protection Assay
Paloma Martín-Sanz and Lisardo Boscá ... 163

16 Detection of NOS isoforms by Western-Blot Analysis
Fiona S. Smith and Michael A. Titheradge .. 171

17 Immunohistochemical Localization of NOS Isoforms
Victoria Cattel and Karen Mosley ... 181

18 A Practical Protocol for the Demonstration of NOS Using In Situ Hybridization
G. Michael Taylor and H. Terence Cook .. 191

19 Use of NO Donors in Biological Systems
Jayne M. Tullett and Daryl D. Rees .. 205

20 Making and Working with Peroxynitrite
Roger White, John Crow, Nathan Spear, Steven Thomas, Rakesh Patel, Irene Green, Joseph Beckman, and Victor Darley-Usmar .. 215

21 The Use of NO Gas in Biological Systems
Neil Hogg and B. Kalyanaraman ... 231

22 A Microtiter-Plate Assay of Human NOS Isoforms
John Dawson and Richard G. Knowles ... 237

23 Use of Arginine Analogs as Inhibitors of Nitric Oxide Synthase in Rat-Aortic Rings
Rachel J. Russell ... 243

24 Measurement of Biopterin and the Use of Inhibitors of Biopterin Biosynthesis
Kazuyuki Hatakeyama .. 251

25 A Sensitive Assay for the Enzymatic Activity of GTP Cyclohydrolase I
Kazuyuki Hatakeyama and Toshie Yoneyama ... 265

26 Simultaneous Measurement of Mitochondrial Function and NO
Ignacio Lizasoain and María A. Moro .. 273

27 Release of NO from Donor Compounds: A Mathematical Model for Calculation of NO Concentrations in the Presence of Oxygen
Kurt Schmidt, Wolfgang Desch, Peter Klatt, Walter R. Kukovetz, and Bernd Mayer .. 281

28 The Determination of Nitrotyrosine Residues in Proteins
Andrew J. Gow, Molly McClelland, Sarah E. Garner, Stuart Malcom, and Harry Ischiropoulos .. 291

29 Measurement of DNA Damage Using the Comet Assay
Steven Thomas, Michael H. L. Green, Jillian E. Lowe, and Irene C. Green .. 301

30 Methods for the Study of NO-Induced Apoptosis in Cultured Cells
Anne C. Loweth and Noel G. Morgan .. 311

Index ... 321
Contributors

STEPHEN L. ARCHER • Cardiovascular Section (111C), Minneapolis VA Medical Center, Minneapolis, MN
JOSEPH BECKMAN • Department of Anesthesiology, University of Alabama at Birmingham, AL
TIMOTHY R. BILLIAR • Department of Surgery, University of Pittsburgh School of Medicine, Presbyterian University Hospital, Pittsburgh, PA
LISARDO BOSCÁ • Facultad de Farmacia, Instituto de Bioquimica CSIC-UCM, Universidad Complutense, Madrid, Spain
VICTORIA CATTELL • Department of Histopathology, Imperial College School of Medicine at St. Mary's, London, UK
IAN G. CHARLES • The Cruciform Project, The Rayne Institute, London, UK
ANN CHUBB • The Cruciform Project, The Rayne Institute, London, UK
H. TERENCE COOK • Department of Histopathology, Imperial College School of Medicine at St. Mary's, London, UK
JOHN P. CROW • Department of Anesthesiology, University of Alabama at Birmingham, AL
JAMES C. CUNNINGHAM • Department of Pharmacy, University of Brighton, Brighton, UK
VICTOR M. DARLEY-USMAR • Molecular and Cellular Division, Department of Pathology, University of Alabama at Birmingham, AL
JOHN DAWSON • Glaxo-Wellcome Research and Development, Stevenage, UK
WOLFGANG DESCH • Institut für Mathematik, Karl-Franzens-Universität Graz, Graz, Austria
NEALE FOXWELL • The Cruciform Project, The Rayne Institute, London, UK
SARAH E. GARNER • Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA
EDWARD P. GARVEY • Glaxo Wellcome, Research Triangle Park, NC
ANDREW J. GOW • Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA
IRENE C. GREEN • Department of Biochemistry and Molecular Genetics, University of Sussex, Brighton, UK
MICHAEL H. L. GREEN • MRC Cell Mutation Unit, University of Sussex, Brighton, UK
Kazuyuki Hatakeyama • Department of Surgery, University of Pittsburgh, Pittsburgh, PA
Sunna Hauschild • Department of Immunobiology, Institute of Zoology, University of Leipzig, Germany
Benjamin Hemmens • Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Graz, Austria
Neil Hogg • Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, WI
Harry Ischiropoulos • Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA
Mark L. Johnson • Department of Surgery, Presbyterian University Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA
B. Kalyanaraman • Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, WI
Peter Klat • Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
Richard G. Knowles • Enzyme Pharmacology Group, Glaxo-Wellcome Research, Stevenage, UK
Walter R. Kukovetz • Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Graz, Austria
Suzanne Laychock • Department of Pharmacology, SUNY at Buffalo School of Medicine, Buffalo, NY
Ignacio Lizasoain • Departamento de Farmacologica, Facultad Medicina, Universidad Complutense de Madrid, Spain
Jillian E. Lowe • MRC Cell Mutation Unit, University of Sussex, Brighton, UK
Anne Loweth • Department of Biological Sciences, University of Keele, Staffs, UK
Paloma Martín-Sanz • Instituto de Bioquimica CSIC-UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
Bernd Mayer • Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria
Stuart Malcom • Biokinetics Laboratory, Temple University, Philadelphia, PA
Molly McClelland • Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA
Evangelos D. Michelakis • Cardiovascular Section (111C), Minneapolis VA Medical Center, Minneapolis, MN
Noel G. Morgan • Department of Biological Sciences, University of Keele, Staffs, UK
María A. Moro • Departamento de Farmacologica, Facultad Medicina, Universidad Complutense de Madrid, Spain
Contributors

KAREN MOSLEY • Department of Histopathology, Imperial College School of Medicine at St. Mary's, London, UK
S. TSUYOSHI OHNISHI • Philadelphia Biomedical Research Institute, King of Prussia, PA
RICHARD C. RAYNE • Department of Biology, Birkbeck College, University of London, UK
DARYL D. REES • Centre for Clinical Pharmacology, University College London, The Rayne Institute, London, UK
NORBERT REILING • The Picower Institute for Medical Research, Manhasset, NY
R. J. RUSSELL • Discovery Biology II, Pfizer Ltd, Sandwich, UK
MARK SALTER • Lead Discovery Group, Glaxo-Wellcome Research, Stevenage, UK
RICHARD A. SHAPIRO • Department of Surgery, University of Pittsburgh School of Medicine, Presbyterian University Hospital, Pittsburgh, PA
KURT SCHMIDT • Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Graz, Austria
FIONA S. SMITH • School of Biological Sciences, University of Sussex, Brighton, UK
NATHAN SPEAR • Department of Anesthesiology, University of Alabama at Birmingham, AL
G. MICHAEL TAYLOR • Department of Respiratory Medicine, Imperial College School of Medicine at St. Mary's, London, UK
STEVEN THOMAS • Department of Biochemistry and Molecular Genetics, University of Sussex, Brighton, UK
MICHAEL A. TITHERADGE • School of Biological Sciences, University of Sussex, Brighton, UK
JAYNE TULLLETT • MRC Toxicology Unit, University of Leicester, Leicester, UK
ARTUR J. ULMER • Department of Immunology and Cell Biology, Forschungszentrum Borstel, Germany
C. ROGER WHITE • Vascular Biology and Hypertension Program, Department of Medicine, University of Alabama at Birmingham, AL