GASTROINTESTINAL
ENDOCRINOLOGY
CONTEMPORARY ENDOCRINOLOGY

P. Michael Conn, SERIES EDITOR

15. Autoimmune Endocrinopathies, edited by Robert Volpé, 1999
13. Hormone Replacement Therapy, edited by A. Wayne Meikle, 1999
10. Molecular and Cellular Pediatric Endocrinology, edited by Stuart Handwerger, 1999
8. Gastrointestinal Endocrinology, edited by George H. Greeley, 1999
3. Diseases of the Pituitary: Diagnosis and Treatment, edited by Margaret E. Wierman, 1997
2. Diseases of the Thyroid, edited by Lewis E. Braverman, 1997
The subject of gastrointestinal endocrinology is not young or new; present-day endocrinology had its birth near the turn of the century with the finding that pancreatic secretion of bicarbonate into the duodenal lumen of dogs is regulated by a blood-borne substance (i.e., hormone), named secretin, that was secreted by the small intestine. The structure of secretin was finally elucidated approximately six decades later. Today, gastrointestinal endocrinology still deals primarily with small peptides, and in the last three decades gastrointestinal endocrinology has experienced a logarithmic growth resulting from the discovery of numerous new gut peptides, along with the characterization of many of their receptors and their intracellular signal transduction mechanisms. In the early years of gut endocrinology, the function of a gut hormone was easily recognized by its name; for instance, the intestinal hormone, cholecystokinin (CCK), stimulated the gallbladder to contract and release bile into the intestinal lumen. Secretin was named for its ability to stimulate pancreatic exocrine secretion. Today, in many cases, it is impossible to imagine what the cryptic names of gut peptides signify. For instance, what does peptide YY (PYY) do in the gastrointestinal tract? We all know that "Y" is the peptide chemist's shorthand for the amino- and carboxy-terminal amino acid residues, tyrosine, but the remainder of the nomenclature is less clear.

Gut peptides are part of a complex biological signaling system and provide the substrate for intercellular communication in the gut as well as between the gut and other organs in the body. Gastrointestinal and pancreatic peptides are better called regulatory peptides since they are also found outside of the gastrointestinal tract and pancreas, are produced in non-endocrine cell types, and participate in the regulation of many processes that ultimately result in physiologic homeostasis and adaptation. The term "endocrinology" is also misleading since many of these peptides exert their plethora of regulatory effects by multiple pathways using paracrine, autocrine, neurocrine, as well as endocrine routes.

It is impossible to cover all gut peptides in a single volume; therefore, the purpose of *Gastrointestinal Endocrinology* is to focus on a select few gut peptides, their physiology and pathophysiology, and regulatory mechanisms underlying their actions in the gut.

Gastrointestinal Endocrinology is divided into four main sections. There is one introductory chapter followed by three sections that focus on gut peptide pharmacology, processing, and receptor biology; regulatory mechanisms in the gut; and lastly, specific gut peptides.

George H. Greeley, Jr.
CONTENTS

 Preface .. v
 Contributors .. ix

Introduction

Structure and Function of Gastrointestinal Endocrine Cells

1. Alison M. J. Buchan

PART I

BIOCHEMISTRY, PHARMACOLOGY, AND RECEPTOR BIOLOGY 31

1. Biosynthesis and Processing of Gastrointestinal Peptide Hormones

 Margery C. Beinfeld

2. Mechanisms That Attenuate Signaling by Regulatory Peptides

 Stephan Böhm, Eileen F. Grady, and Nigel W. Bunnett

3. Cellular and Molecular Targets of Gastrin

 Nadya Tarasova

4. Receptors for Peptides of the VIP/PACAP and PYY/NPY/PP Families

 Marc Laburthe, Alain Couvineau, and Thierry Voisin

PART II

REGULATORY MECHANISMS AND SYSTEMS: PHYSIOLOGY AND PATHOPHYSIOLOGY ... 159

5. Cholecystokinin: Hormonal and Neurocrine Regulator of Postprandial Gastrointestinal Function

 Helen E. Raybould

6. Effects of Aging on Gut Hormones

 Tien C. Ko and James C. Thompson

7. Gastrointestinal Hormones and Gastrointestinal Cancer Growth

 Yan-Shi Guo and Courtney M. Townsend, Jr.

8. Intraluminal Regulatory Peptides and Intestinal Cholecystokinin Secretion

 Alan W. Spannagel and Gary M. Green

9. Neuroendocrine Control of the Exocrine Pancreas

 David C. Whitcomb

10. Neuroendocrine Immune Axis in the Intestine

 Sang K. Park and M. Sue O’Dorisio

11. Neuroendocrine Regulation of Intestinal Peristalsis

 J. R. Grider and A. E. Foxx-Orenstein

12. Pancreatic Polypeptide and Glucose Metabolism

 Neal E. Seymour and Dana K. Andersen
13 Peptide Release from the Upper Small Intestine335
 Jean-Claude Cuber

14 Regulation of Gastric Acid Secretion ...353
 Wolfgang E. Schmidt and Jerzy B. Bójko

15 Role of Cholecystokinin in Physiologic and Pathophysiologic
 Growth of the Pancreas ..393
 Craig D. Logsdon

PART III GUT PEPTIDES...423

16 Expression of the Neurotensin/Neuromedin N Gene in the Gut:
 A Potential Model for Gut Differentiation425
 B. Mark Evers

17 Glucose-Dependent Insulinotropic Polypeptide (GIP):
 Incretin vs Enterogastrone ...439
 M. Michael Wolfe, Michael O. Boylan, Timothy J. Kieffer,
 and Chi-Chuan Tseng

18 Insulin-Like Growth Factors and Their Receptors and Binding
 Proteins in the Gastrointestinal System467
 Yan-Shi Guo, James C. Thompson, and Courtney M. Townsend, Jr.

19 Intestinal Proglucagon-Derived Peptides493
 Patricia L. Brubaker and Daniel J. Drucker

20 Islet Amyloid Polypeptide and Adrenomedullin:
 Novel Peptide Hormones Expressed in the Gastro-Entero-
 Pancreatic Region ...515
 Hindrick Mulder, Bo Ahren, Eva Ekblad, Samuel Gebre-Medhin,
 Christer Betsholtz, Johan Sundelin, Gunilla T. Westermark,
 Per Westermark, and Frank Sundler

21 Peptide YY ..551
 Guillermo Gomez, Vidyavathi Udupi, and George H. Greeley, Jr.

Index ...577
CONTRIBUTORS

Bo Ahren • Department of Medicine at Malmö University, Lund University, Sweden
Dana K. Andersen • Department of Surgery, Yale University School of Medicine, New Haven, CT
Margery C. Beinfeld • Department of Pharmacology and Experimental Therapy, Tufts University Medical School, Boston, MA
Christer Betsholtz • Department of Medical Biochemistry, University of Gothenburg, Sweden
Stephan Böhm • Department of Surgery, University of California, San Francisco, CA
Jerzy B. Böiko • Laboratory of Molecular Gastroenterology, Department of Medicine, Christian-Albrechts University, Kiel, Germany
Michael O. Boylan • Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA; and Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA
Patricia L. Brubaker • Departments of Physiology and Medicine, University of Toronto, Canada
Alison M. J. Buchan • Department of Physiology, University of British Columbia, Vancouver, Canada
Nigel W. Bunnett • Departments of Surgery and Physiology, University of California, San Francisco, CA
Alain Couvineau • Neuroendocrinology and Cell Biology of the Digestive System, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, INSERM U, Paris, France
Jean-Claude Cuber • Hôpital Edouard Herriot, Lyon and Unité d’Ecologie et de Physiologie du Système Digestif, INRA, Jouy-en-Josas, France
Daniel J. Drucker • Department of Medicine, University of Toronto, Canada
Eva Ekblad • Section of Neuroendocrine Cell Biology, Department of Physiology and Neuroscience, University of Lund, Sweden
B. Mark Evers • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
A. E. Foxx-Orenstein • Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA
Samuel Gebre-Medhin • Department of Medical Biochemistry, University of Gothenburg, Sweden
Guillermo Gomez • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
Eileen F. Grady • Department of Surgery, University of California, San Francisco, CA
George H. Greeley, Jr. • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
Gary M. Green • Department of Physiology, The University of Texas Health Science Center at San Antonio, TX
J. R. Grider • Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA
YAN-SHI GUO • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
TIMOTHY J. KIEFFER • Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA; and Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA
TIEN C. KO • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
MARC LABURTHE • Neuroendocrinology and Cell Biology of the Digestive System, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, INSERM U, Paris, France
CRISTIAN WOLGARD • Department of Medicine, Christian-Albrechts University, Kiel, Germany
MARC LABURTHE • Laboratory of Molecular Gastroenterology, Department of Medicine, Christian-Albrechts University, Kiel, Germany
NEAL E. SEYMOUR • Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA
ALAN W. SPANNAGEL • Department of Physiology, The University of Texas Health Science Center at San Antonio, TX
JOHAN SUNDELLIN • Section of Neuroendocrine Cell Biology, Department of Physiology and Neuroscience, University of Lund, Sweden
FRANK SUNDLER • Section of Neuroendocrine Cell Biology, Department of Physiology and Neuroscience, University of Lund, Sweden
NADYA TARASOVA • ABL-Basic Research Program, NCI, FCRDC, Frederick, MD
JAMES C. THOMPSON • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
COURTNEY M. TOWNSEND, JR. • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
CHI-CHUAN TSENG • Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA; and Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA
VIDYAVATHI UDUPI • Department of Surgery, The University of Texas Medical Branch, Galveston, TX
THIERRY VOISIN • Neuroendocrinology and Cell Biology of the Digestive System, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, INSERM U, Paris, France
GUNILLA T. WESTERMARK • Department of Pathology, University of Linköping, Sweden
PER WESTERMARK • Department of Pathology, University of Linköping, Sweden
DAVID C. WHITCOMB • Division of Gastroenterology and Hepatology, University of Pittsburgh Medical Center, Pittsburgh, PA
M. MICHAEL WOLFE • Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA; and Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA