MAP Kinase Signaling Protocols
MAP Kinase Signaling Protocols

Edited by

Rony Seger
Department of Biological Regulation,
The Weizmann Institute of Science, Rehovot, Israel
Mitogen-activated protein kinase (MAPK) signaling cascades are a group of protein kinases that play a central role in the intracellular transmission of extracellular signals. These cascades operate as major lines of communication within a complicated signaling network that regulates many cellular processes, including proliferation, differentiation, development, stress response, and apoptosis. More than 15,000 papers on MAPKs have been published over the past few years, with the number of publications increasing each year. More and more laboratories embark on the study of MAPK cascades in many distinct cellular systems and in particular their role in disease.

Future challenges in the study of MAPK cascades remain in understanding the role of the various components and isoforms of the cascades in the multiple critical functions that they regulate in the whole organism, as well as the diseases caused by their malfunction. Data from gene-disrupted mice suggest that inhibition of the MAPK cascades may have serious consequences on the development and growth of the animals. For example, targeted deletion of MEK1 is lethal, owing to developmental problems of placental vasculature and abnormal fibroblast migration. This lethality occurs in spite of the normal expression of MEK2, indicating that although the two MEK isoforms are apparently similar, they do have distinct functions, at least during embryogenesis. The ERK cascade was also shown to play a central role in brain function and in learning and memory. Thus, inhibition of this cascade by MEK inhibitors may prevent ischemic damages whereas naturally occurring mutations in the downstream target of ERKs (the RSK2) causes mental retardation syndromes. In addition, the ERK cascade also plays a role in the positive and negative selection of T cells in the thymus, angiogenesis, malignancies, and in many other syndromes and diseases. The ERK5, p38MAPK, and JNK cascades may also have a role in stress, inflammation, learning and memory, malignancies, and so on.

One of the most intriguing issues in the study of the MAPK cascades is their involvement in cancer. As mentioned above, the ERK cascade is a major regulator of proliferation, and its involvement in the induction of tumor formation is well established. Moreover, this pathway regulates cell survival and, sometimes, apoptosis in many different cell types. It can counteract the pro-apoptotic signaling of other members of the MAPK cascades (e.g., JNK). Since
cellular transformation is often a result of an imbalance favoring cell survival and proliferative pathways over those of apoptosis, malfunctioning of all MAPK cascades may lead to the induction of cancers under distinct conditions. Finally, many tumors show elevated levels of MAPKs activity, and in particular that of ERK1 and 2, which probably owes to the expression of oncogene products that are upstream regulators of the MAPKs (e.g., Ras, Raf). Therefore, the study of the MAPK cascade is essential for understanding a large number of diseases in general and of cancer in particular.

MAP Kinase Signaling Protocols aims to provide updated information on the various techniques used in the study of MAPK signaling cascades in various cellular contexts, namely the detection and measurement of activity of the MAPKs and other components of their cascades. MAP Kinase Signaling Protocols discusses the following: (1) determination of the subcellular localization of these components, (2) structural and biophysical analysis of the components, (3) identification of novel components of known and unknown signaling cascades, (4) upstream mechanisms of activation of MAPK cascades by various receptors, (5) mechanisms involved in the downregulation of the MAPK cascades, and (6) identification of targets of the MAPK cascades.

Biochemists and cell biologists from various fields of interest, who intend to study MAPK signaling in their experimental systems would find MAP Kinase Signaling Protocols most useful. The book will also interest physicians who would like to study the involvement of MAPKs in health and disease, as well as biotechnologists interested in the use of MAPK signaling as a readout for the influence of drugs. One of the main problems in the field of MAPK today is the large number of different methods that are used to study each of the parameters outlined above. The chapters herein, contributed by the leaders in the field, should provide the appropriate methods to be used in future studies.

Rony Seger
Contents

Preface .. v
Contributors ... ix

1 The ERK Cascade As a Prototype of MAPK Signaling Pathways
 Hadara Rubinfeld and Rony Seger .. 1

2 Determination of ERK Activity: Antiphospho-ERK Antibodies, In Vitro Phosphorylation, and In-Gel Kinase Assay
 Sarah Kraus and Rony Seger ... 29

3 Detection of ERK1/2 Activities Using Affinity Reagents
 Rafael Pulido, Ángel Zúñiga, and Axel Ullrich .. 49

4 Activation of SAPKs/JNKs and p38s In Vitro
 John M. Kyriakis, Hong Liu, and Deborah N. Chadee .. 61

5 Investigating the Cellular BMK1/ERK5 Signaling Pathway
 Richard I. Tapping, Kato Yutaka, Ta-Hsiang Chao, Masaaki Hayashi, Jeng-Fan Lo, Sung-Woo Kim, and Jiing-Dwan Lee .. 89

6 Pull-Down Assays for Guanosine 5’-Triphosphate-Bound Ras-Like Guanosine 5’-Triphosphatases
 Miranda van Triest and Johannes L. Bos ... 97

7 Regulation of MAPK Cascades by Protein Tyrosine Phosphatases
 Josema Torres, Carmen Blanco-Aparicio, and Rafael Pulido .. 103

8 Use of Inhibitors in the Study of MAPK Signaling
 Yoav D. Shaul and Rony Seger .. 113

9 Structure of MAPKs
 Elizabeth J. Goldsmith, Melanie H. Cobb, and Chung-I Chang .. 127

10 Subcellular Localization of MAPKs
 Makoto Adachi and Eisuke Nishida .. 145

11 Study of MAPK Signaling Using Knockout Mice
 Gilles Pagès and Jacques Pouysségur ... 155
12 Computer Simulation of MAPK Signal Transduction
 Baltazar D. Aguda and Herbert M. Sauro .. 167
13 Signaling by Growth Factor Receptors
 Bose S. Kochupurakkal and Yosef Yarden .. 177
14 Activation of MAPK by G Protein-Coupled Receptors
 Piero Crespo and J. Silvio Gutkind ... 203
15 Identification of MAPK Substrates by Expression Screening
 With Solid-Phase Phosphorylation
 Rikiro Fukunaga and Tony Hunter .. 211
16 Study of Substrate Specificity of MAPKs
 Using Oriented Peptide Libraries
 Michael B. Yaffe .. 237
17 Ras Signaling Pathway for Analysis
 of Protein–Protein Interactions in Yeast and Mammalian Cells
 Ami Aronheim ... 251
18 Methods in Functional Proteomics:
 Two-Dimensional Polyacrylamide Gel Electrophoresis
 With Immobilized pH Gradients, In-Gel Digestion,
 and Identification of Proteins by Mass Spectrometry
 Karine R. Bernard, Karen R. Jonscher, Katheryn A. Resing,
 and Natalie G. Ahn ... 263
19 Practical Methods for Deuterium Exchange/Mass Spectrometry
 Andrew N. Hoofnagle, Katheryn A. Resing,
 and Natalie G. Ahn ... 283
20 Use of Xenopus Oocytes and Early Embryos
 to Study MAPK Signaling
 Eusebio Perdiguero and Angel R. Nebreda 299
21 MAPK Cascades in the Brain: Lessons From Learning
 Diego E. Berman and Yadin Dudai ... 315
Index .. 323
Contributors

MAKOTO ADACHI • Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyō-ku, Kyoto, Japan
NATALIE G. AHN • Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, University of Colorado, Boulder, CO
BALTazar D. AGUDA • Department of Genetics and Genomics, Boston University School of Medicine, Boston, MA
AMI ARONHEIM • Department of Molecular Genetics, Rappaport Family Institute, B. Rappaport Faculty of Medicine, Technion, Bat-Galim, Haifa, Israel
DIEGO E. BERMAN • Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel, and Center for Neurobiology and Behavior, Columbia University, New York, NY
KARINE R. BERNARD • Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
CARMEN BLANCO-APARICIO • Instituto de Investigaciones Citológicas, Valencia, Spain
JOHANNES L. BOS • Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
DEBORAH N. CHADEE • Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, MA
CHUNG-I CHANG • Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX
TA-HSIANG CHAO • Department of Immunology, The Scripps Research Institute, La Jolla, CA
MELANIE H. COBB • Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX
PIERO CRESPO • Consejo Superior de Investigaciones Científicas, Instituto de Investigaciones Biomédicas, Madrid, Spain
YADIN DUDAI • Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
RIKIRO FUKUNAGA • Department of Genetics, Osaka University Medical School, Osaka, Japan
ELIZABETH J. GOLDSMITH • Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX
J. SILVIO GUTKIND • Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
MASAAKI HAYASHI • Department of Immunology, The Scripps Research Institute, La Jolla, CA
ANDREW N. HOOFNAGLE • Department of Chemistry and Biochemistry, University of Colorado, Boulder, and School of Medicine, University of Colorado Health Sciences Center, Denver, CO
TONY HUNTER • Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
KAREN R. JONSCHER • Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
SUNG-WOO KIM • Department of Immunology, The Scripps Research Institute, La Jolla, CA
BOSE S. KOCHUPURAKKAL • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
SARAH KRAUS • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
JOHN M. KYRIAKIS • Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, MA
JIING-DWAN LEE • Department of Immunology, The Scripps Research Institute, La Jolla, CA
HONG LIU • Mercury Therapeutics, Woburn, MA
JENG-FAN LO • Department of Immunology, The Scripps Research Institute, La Jolla, CA
ANGEL R. NEBREDA • European Molecular Biology Laboratory, Heidelberg, Germany
EISUKE NISHIDA • Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
GILLES PAGÈS • Institute of Signaling, Developmental Biology and Cancer Research, Centre Antoine Lacassagne, Nice, France
EUSEBIO PERDIGUERO • European Molecular Biology Laboratory, Heidelberg, Germany
JACQUES POUYSSÉGUR • Institute of Signaling, Developmental Biology, and Cancer Research, Centre Antoine Lacassagne, Nice, France
RAFAEL PULIDO • Instituto de Investigaciones Citológicas, Valencia, Spain
KATHERYN A. RESING • Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
Contributors

HADARA RUBINFELD • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
HERBERT M. SAURO • Caltech/ERATO Kitano Systems Biology Group, Control and Dynamical Systems, California Institute of Technology, Pasadena, CA
RONY SEGER • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
YOAV D. SHAUL • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
RICHARD I. TAPPING • Department of Immunology, The Scripps Research Institute, La Jolla, CA
JOSEMA TORRES • Instituto de Investigaciones Citológicas, Valencia, Spain
AXEL ULLRICH • Department of Molecular Biology, Max-Planck Institut für Biochemie, Martinsried, Germany
MIRANDA VAN TRIEST • Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
MICHAEL B. YAFFE • Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, and Department of Surgery, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA
YOSEF YARDEN • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
KATO YUTAKA • Department of Immunology, The Scripps Research Institute, La Jolla, CA
ÁNGEL ZÚÑIGA • Instituto de Investigaciones Citológicas, Valencia, Spain