Receptor Binding
Series I: Neurochemistry

1. General Neurochemical Techniques
 Edited by Alan A. Boulton and Glen B. Baker, 1985
2. Amines and Their Metabolites
 Edited by Alan A. Boulton, Glen B. Baker, and Judith M. Baker, 1985
3. Amino Acids
 Edited by Alan A. Boulton, Glen B. Baker, and James D. Wood, 1985
4. Receptor Binding
 Edited by Alan A. Boulton, Glen B. Baker, and Pavel D. Hrdina, 1986
5. Enzymes
 Edited by Alan A. Boulton, Glen B. Baker, and Peter H. Yu, 1986
Foreword

Techniques in the neurosciences are evolving rapidly. There are currently very few volumes dedicated to the methodology employed by neuroscientists, and those that are available often seem either out of date or limited in scope. This series is about the methods most widely used by modern-day neuroscientists and is written by their colleagues who are practicing experts.

Volume 1 will be useful to all neuroscientists since it concerns those procedures used routinely across the widest range of subdisciplines. Collecting these general techniques together in a single volume strikes us not only as a service, but will no doubt prove of exceptional utilitarian value as well. Volumes 2 and 3 describe all current procedures for the analyses of amines and their metabolites and of amino acids, respectively. These collections will clearly be of value to all neuroscientists working in or contemplating research in these fields. Similar reasons exist for Volume 4 on receptor binding techniques since experimental details are provided for many types of ligand-receptor binding, including chapters on general principles, drug discovery and development, and a most useful appendix on computer programs for Scatchard, nonlinear, and competitive displacement analyses. Volume 5 provides procedures for the assessment of enzymes involved in biogenic amine synthesis and catabolism.

Volumes in the NEUROMETHODS series will be useful to neurochemists, -pharmacologists, -physiologists, -anatomists, psychopharmacologists, psychiatrists, neurologists, and chemists (organic, analytical, pharmaceutical, medicinal); in fact, everyone involved in the neurosciences, both basic and clinical.
Preface

The purpose of this volume, which is part of a series on "Neuromethods," is to critically review the contribution of receptor binding studies to the fields of neuropharmacology and neurochemistry. Emphasis is being placed on the methodological aspects of these studies and on the problems in integrating the binding data with the function of receptors in physiological or pathological processes.

Current trends in receptor research aim at (i) correlation of receptor binding with the electrophysiological, biochemical, or behavioral responses, (ii) adaptive changes in the state of receptors reflected in altered binding, and (iii) the search for endogenous ligands for binding sites characterized by drugs. All this is reflected in individual chapters of this book. They are not proceedings of a symposium or a workshop. The contributors were selected on the basis of their work in a particular field. The chapters share a common organizational scheme in order to provide the reader with a familiar pattern of information when searching through various topics. The introductory chapter is intended as a brief review of general principles in receptor binding assays for uninitiated readers. It is complemented by the last chapter on the role of receptor binding in drug discovery and development. Examples of computer programs for estimation of binding parameters are given in an appendix to chapter 10. Reasonable attempts were made to minimize unnecessary repetition and overlap. However, some overlap was unavoidable, particularly where assays for various neurotransmitters are described in detail.

This volume reviews the current state of knowledge of receptor (recognition) sites in the brain that mediate the action of putative neurotransmitters or modulators such as GABA, excitatory amino acids, dopamine, noradrenaline, serotonin, acetylcholine, purines, and opioid and nonopioid peptides, and of some psychotropic drugs such as antidepressants, amphetamine, phencyclidine, and benzodiazepines. It will be of interest particularly to
neuropharmacologists, neurophysiologists, neurobiologists, neurochemists, neurologists, and biological psychiatrists, but also to researchers or physicians in other fields of biology and medicine interested in receptor-mediated events.

Pavel D. Hrdina
Contents

Foreword..v
Preface...vii
Contributors ...xxi

CHAPTER 1
GENERAL PRINCIPLES OF RECEPTOR BINDING
Pavel D. Hrdina

1. Introduction ... 1
 1.1. Receptor as a Supramolecular Complex .. 2
2. Ligand–Receptor Interaction ... 4
 2.1. The Direct Binding Assay ... 4
 2.2. Criteria for Specific Binding of Biological Consequence 7
 3.1. Scatchard Plot ... 9
 3.2. Hill Plot ... 11
 3.3. Determination of Kinetic Constants ... 12
4. Pharmacological Characterization of Binding Sites ... 13
5. Distribution and Localization of Receptors and Correlation With Biological Response .. 15
6. Regulation of Receptor Sites ... 16
7. Conclusion and Trends .. 17
References ... 20

CHAPTER 2
CENTRAL NERVOUS SYSTEM DOPAMINE RECEPTORS
Ram K. Mishra

1. Introduction ... 23
2. Dopamine Receptors ... 26
 2.1. Membrane Binding Assay ... 26
 2.2. Dopamine-Stimulated Adenylate Cyclase Assay 27
3. Effects of Peptides on Dopamine Receptors .. 27
3.1. Effect of PLG on Dopamine Receptors27
3.2. Cholecystokinin and Dopamine
Receptors ..28
3.3. Dopamine Receptor Blocking Agents and
Substance P ..29
4. Studies of Dopamine Receptor Subsensitivity
and Supersensitivity ..31
5. Effect of Guanine Nucleotides on Dopamine
Receptor Binding ..35
6. Solubilization of Dopamine Receptors45
7. Conclusion ..47
References ..49

CHAPTER 3
ADRENERGIC RECEPTORS
John Marvin May and Kenneth P. Minneman
1. Introduction ..55
2. Classification ..55
 2.1. β-Adrenergic Receptor Subtypes56
 2.2. α-Adrenergic Receptor Subtypes57
3. Radioligands for Direct Measurements58
 3.1. β-Adrenergic Receptors59
 3.2. α-Adrenergic Receptors59
4. Kinetic and Equilibrium Binding
 Properties ..62
 4.1. Binding Properties of β-Adrenergic
 Receptors ...62
 4.2. Binding Properties of α-Adrenergic
 Receptors ...64
5. Signal Transduction ..65
6. Relationship Between Receptor Occupancy and
 Tissue Response ..69
7. Regulation of Receptor Density and
 Responsiveness ...75
 7.1. Alterations in β-Adrenergic Receptors75
 7.2. Alterations in α-Adrenergic Receptors77
8. Functional Implications of Multiple
 Receptor Subtypes78
9. Summary and Future Directions80
References ..81
CHAPTER 4
SEROTONIN RECEPTORS
Stephen J. Peroutka

1. Introduction .. 93
2. Radioligand Binding Studies of Serotonin Receptors .. 94
 2.1. Preliminary Binding Studies .. 94
 2.2. Differentiation of 5-HT₁ and 5-HT₂ Receptors .. 95
 2.3. 5-HT₁ Receptor Subtypes .. 98
3. Regional Localization of 5-HT₁ and 5-HT₂ Receptors .. 99
 3.1. Radioligand Binding Studies .. 99
 3.2. Autoradiographic Analysis .. 99
4. Physiologic Correlates of 5-HT₁ and 5-HT₂ Receptors .. 100
 4.1. Serotonin-Sensitive Adenylate Cyclase .. 102
 4.2. "Autoreceptor" Modulation of Neurotransmitter Release .. 103
 4.3. Smooth Muscle Contraction Studies .. 104
 4.4. Neurophysiologic Effects of 5-HT .. 105
 4.5. Behavioral Studies .. 106
 4.6. Other Systems .. 107
5. Future Strategies for Further Differentiation of Serotonin Receptor Subtypes .. 107
 References .. 110

CHAPTER 5
TRYPTAMINE AND PHENYLETHYLAMINE RECOGNITION SITES IN BRAIN
Kenneth J. Kellar and Caren S. Cascio

1. Introduction .. 119
2. [³H]-Tryptamine Recognition Sites .. 121
 2.1. Kinetics of [³H]-Tryptamine Binding Sites .. 122
 2.2. Subcellular Localization .. 124
 2.3. Pharmacology of [³H]-Tryptamine Binding Sites .. 124
 2.4. Distribution of [³H]-Tryptamine Binding Sites in Brain .. 129
2.5. Regulation of [3H]-Tryptamine Binding Sites In Vivo ... 131
3. [3H]-Phenylethylamine Recognition Sites ... 133
4. Summary ... 134
References ... 134

CHAPTER 6
MUSCARINIC CHOLINERGIC RECEPTORS
Andrew P. Braun and Prakash V. Sulakhe

1. Introduction ... 139
2. Pirenzepine .. 140
3. McN-A-343 ... 141
4. Current Methodology ... 141
 4.1. Experiments Involving Radiolabeled Antagonists .. 142
 4.2. Experiments With Radiolabeled Agonists ... 143
 4.3. Use of M1-Directed Radiolabeled Pirenzepine ... 144
 4.4. Analysis ... 144
 4.5. Autoradiography .. 146
 4.6. Receptor Solubilization ... 146
 4.7. Properties .. 147
 4.8. Receptor Size .. 149
 4.9. Specific Brain Locations .. 150
5. Reinterpretation of Published Data in Terms of Receptor Subtypes 151
6. In Vitro Characterization of M1 and M2 Receptor Subtypes .. 153
7. What Constitutes the Muscarinic Receptor High-Affinity Site? 154
8. Likely Effectors Regulated by M1 and M2 Receptors .. 155
9. Methods and Materials ... 156
 9.1. Reagents and Solutions ... 157
 9.2. Buffers ... 159
 9.3. Stability of Solutions .. 159
 9.4. Binding Assay Procedure ... 159
 9.5. Data Analysis .. 164
 9.6. Additional Comments ... 165
10. Conclusions .. 165
References ... 166
CHAPTER 7
EXCITATORY AMINO ACID RECEPTORS
John W. Ferkany and Joseph T. Coyle

1. Introduction ... 171
2. Receptors for Excitatory Amino Acids 172
 2.1. Agonists ... 173
 2.2. Antagonists .. 188
3. Assay Methods ... 194
 3.1. General Considerations 194
 3.2. Tissue Preparation 196
 3.3. Protocols ... 198
4. Applications ... 201
5. Directions .. 204
 References .. 205

CHAPTER 8
GABA RECEPTOR BINDING
Kenneth George Lloyd

1. Introduction ... 217
2. GABA_A Receptors ... 218
 2.1. Membrane Preparation for GABA_A Receptor Binding .. 218
 2.2. Binding to the GABA_A Recognition Site:
 Choice of Ligand ... 223
 2.3. Assay Conditions for Binding to the GABA_A Recognition Site 226
 2.4. In Vitro Pharmacological Characterization of the GABA_A Recognition Site by Binding Techniques ... 231
 2.5. In Vivo Binding Studies of the GABA_A Receptor ... 233
3. GABA_B Receptor Binding 237
 3.1. Membrane Preparation for GABA_B Binding 237
 3.2. GABA_B Binding Assay 238
 3.3. Pharmacological Characterization of GABA_B Binding .. 241
4. Differentiation of GABA Receptor Binding Sites 241
5. Conclusions .. 243
 References .. 243
CHAPTER 9
RECEPTORS FOR NONOPIOID NEUROPEPTIDES
Michel Goedert

1. Introduction ... 251
2. Nonopioid Neuropeptides: Functional Aspects ... 252
3. Substance P Receptors .. 255
 3.1. Biological Assays .. 256
 3.2. Radioligand Binding Studies 261
 3.3. Second Messengers .. 267
4. Vasoactive Intestinal Polypeptide Receptors 267
 4.1. Radioligand Binding Studies 269
 4.2. Second Messengers .. 276
5. Cholecystokinin Receptors ... 278
 5.1. Radioligand Binding Studies 280
 5.2. Second Messengers .. 284
6. Neurotensin Receptors .. 285
 6.1. Biological Assays .. 287
 6.2. Radioligand Binding Studies 291
 6.3. Second Messengers .. 305
7. Conclusion ... 306
References .. 309

CHAPTER 10
MULTIPLE OPIOID RECEPTORS IN THE CENTRAL
NERVOUS SYSTEM
Paul L. Wood

1. Introduction ... 329
 1.1. Multiple Opioid Receptors 329
2. Mu (μ) Receptor ... 333
 2.1. Membrane Preparation ... 333
 2.2. Binding Assay .. 333
3. Delta (δ) Receptor ... 336
4. Kappa (κ) Receptor ... 338
 4.1. Selective Suppression .. 338
 4.2. Computer Analysis of Multiphasic Displacement 338
 4.3. Selective Incubation Conditions 338
5. Epsilon (ε) Receptor ... 341
6. Sigma (σ) Receptor .. 342
CHAPTER 11
PURINERGIC RECEPTORS IN THE CNS
Michael Williams

1. Introduction... 365
2. Purinergic Receptors .. 366
3. Adenosine Effects in Mammalian Tissues 370
 3.1. CNS Effects .. 370
 3.2. Cardiovascular Actions of Adenosine 377
4. Adenosine Availability in the CNS 378
5. Binding of Ligands to Purinergic Receptors 381
 5.1. ATP Binding .. 382
 5.2. Adenosine Agonist Binding .. 382
 5.3. Adenosine Antagonist Binding 386
 5.4. Differences in Agonist and Antagonist Radioligand Binding.. 387
 5.5. Localization of Adenosine Receptors in the CNS 387
 5.6. Adenosine Receptor Heterogeneity 388
 6.1. Animal Manipulation .. 389
 6.2. Caffeine-Elicited Changes .. 390
 6.3. Adenosine Effects on α2-Adrenoceptor Binding 390
 6.4. Adenosine Receptors in Aged Rats 391
7. Therapeutic Potential of Adenosine-Related Compounds in the CNS .. 391
 7.1. Depression ... 391
 7.2. Anxiety ... 392
7.3. Analgesia .. 393
7.4. Miscellaneous ... 394
8. Adenosine, Purinergic Tone, and CNS Function... 394
References .. 396

CHAPTER 12
THE BENZODIAZEPINE RECEPTOR
Ian L. Martin

1. Introduction .. 415
2. Characterization ... 417
 2.1. Biochemical Characterization 417
 2.2. Localization .. 427
3. Benzodiazepine Receptor Function 430
 3.1. In Vivo Receptor Binding 430
 3.2. Efficacy at the Benzodiazepine Receptor 431
 3.3. The Three-State Model 431
4. Interactions With the Benzodiazepine Receptor 433
 4.1. γ-Aminobutyric Acid 433
 4.2. Effect of Various Ions 433
 4.3. Barbiturates ... 434
 4.4. Others .. 435
5. Endogenous Ligands for the Benzodiazepine Receptor .. 435
6. Structure–Activity Relationships at the Benzodiazepine Receptor 436
7. Binding Assay Technology 438
8. The Future ... 439
References .. 440

CHAPTER 13
BINDING SITES FOR ANTIDEPRESSANTS
Pavel D. Hrdina

1. Introduction .. 455
2. Characterization of 3H-Impiramine Binding
 in Brain .. 456
 2.1. Tissue Preparation and the Binding Assay 457
 2.2. Saturation and Kinetics of 3H-Impiramine
 Binding .. 458
 2.3. Temperature and Ion Dependence 461
2.4. Subcellular Distribution of Binding 462
2.5. Regional Distribution and Ontogenesis of 3H-Imipramine Binding in Brain 463
3. Pharmacological Profile and Physiological Significance of 3H-Imipramine Binding Sites 464
 3.1. Pharmacological Characterization of 3H-Imipramine Binding 464
 3.2. Localization of 3H-Imipramine Binding Sites .. 466
 3.3. High- and Low-Affinity 3H-Imipramine Binding .. 468
 3.4. High-Affinity 3H-Imipramine Sites and Serotonin Uptake Regulation 471
 3.5. Regulation of 3H-Imipramine Binding by Drugs .. 474
4. High-Affinity 3H-Imipramine Binding in Platelets ... 477
 4.1. Characterization of Binding ... 477
 4.2. 3H-Imipramine Binding as a Potential Biological Marker of Depression 480
5. Noradrenaline Uptake Sites and 3H-Desipramine Binding 483
 5.1. Kinetics and Distribution of 3H-Desipramine Binding 483
 5.2. Pharmacological Characterization of 3H-Desipramine Sites 485
 5.3. Localization of 3H-Desipramine Binding Sites and Noradrenaline Uptake 486
 5.4. Regulation and Possible Physiological Significance of 3H-Desipramine Sites 488
6. Conclusions ... 490
 References ... 491

CHAPTER 14
PHENCYCLIDINE (PCP) AND AMPHETAMINE RECEPTOR BINDING SITES
Remi Quirion

1. Introduction ... 499
2. Neurochemical Pharmacology of PCP 500
2.1. Effects on Cholinergic Systems 500
2.2. Effects on Dopaminergic Systems 500
2.3. Effects on Serotonergic Systems 503
2.4. Effects on Noradrenergic and Adrenergic Systems .. 503
2.5. Effects on Amino Acids, Peptides, and Ion Channels .. 506
3. PCP Receptor Binding Sites ... 507
3.1. Early Evidence ... 507
3.2. Controversy .. 511
3.3. Autoradiographic Visualization and Distribution of PCP Binding Sites 513
3.4. Structure–Activity Relationships and Correlation of Binding Data With Biological Assays 519
3.5. PCP and Sigma Opioid Receptor Binding Sites .. 519
3.6. Down-Regulation of PCP Binding Sites 520
3.7. PCP-Related Radioligands ... 521
3.8. Possible Existence of an Endogenous PCP-Like Ligand .. 524
3.9. Summary of Evidence for the Existence of PCP Receptors ... 526
4. Amphetamine Receptor Binding Sites 527
4.1. Neurochemical Effects of Amphetamine 527
4.2. Specific Amphetamine Receptor Binding Sites .. 528
5. Conclusions ... 530
References .. 530

CHAPTER 15
RECEPTOR BINDING IN DRUG DISCOVERY AND DEVELOPMENT
Michael Williams and Paul L. Wood

1. Introduction .. 543
2. Validation of Radioligand Binding Assays 546
3. Binding as a Tool in Drug Screening 547
3.1. General Considerations ... 547
3.2. Practical Aspects .. 548
4. Data Analysis ... 552
4.1. Computer Analysis of Displacement Curves .. 553
5. In Vivo Binding ... 556
6. Receptors and Drug Treatment ... 557
 6.1. Down-Regulation ... 557
 6.2. Up-Regulation ... 558
7. Receptor Autoradiography .. 558
8. Methods to Reveal Receptor Subtypes ... 559
 8.1. Specific Radioligands .. 559
 8.2. Receptor Masking ... 560
 8.3. Computer Analysis of Multiphasic Displacement Curves 560
 8.4. Selective Incubation Conditions .. 560
 8.5. Receptor Inactivation ... 561
9. Conclusions .. 561
References ... 562

INDEX ... 571
Contributors

ANDREW P. BRAUN • Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
CAREN S. CASCIO • Department of Pharmacology, Georgetown University School of Medicine and Dentistry, Washington, DC, USA
JOSEPH T. COYLE • Departments of Neurosciences, Pharmacology, and Experimental Therapeutics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
JOHN W. FERKANY • Nova Pharmaceutical Corporation, Baltimore, Maryland, USA
MICHEL GOEDERT • MRC Neurochemical Pharmacology Unit, Medical Research Council Centre Medical School, Cambridge, UK
PAVEL D. HRDINA • Department of Pharmacology, School of Medicine, University of Ottawa, Ottawa, Ontario, Canada
KENNETH J. KELLAR • Department of Pharmacology, Georgetown University School of Medicine and Dentistry, Washington, DC, USA
KENNETH GEORGE LLOYD • Laboratoire d’Etudes et de Recherches, Synthelabo, Bagneaux, France
IAN L. MARTIN • MRC Neurochemical Pharmacology Unit, Medical Research Council Centre Medical School, Cambridge, UK
KENNETH MARVIN MAY • Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
KENNETH P. MINNEMAN • Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
RAM K. MISHRA • Departments of Psychiatry and Neurosciences, McMaster University, Hamilton, Ontario, Canada
REMI QUIRION • Department of Psychiatry, McGill University and Douglas Hospital Research Centre, Verdun, Quebec, Canada
PRAKASH V. SULAKHE • Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
MICHAEL WILLIAMS • Pharmaceuticals Division, Neurosciences Research, CIBA-GEIGY Corporation, Summit, New Jersey, USA
PAUL L. WOOD • Pharmaceuticals Division, Neurosciences Research, CIBA-GEIGY Corporation, Summit, New Jersey, USA

xxi