Transmembrane Signaling Protocols
Transmembrane Signaling Protocols

Edited by
Dafna Bar-Sagi
State University of New York at Stony Brook, NY
Transmembrane signaling protocols/edited by Dafna Bar-Sagi
 p. cm.—(Methods in molecular biology™; vol. 84)
 Includes bibliographical references and index.
 I. Cellular signal transduction—Laboratory manuals. I. Bar-Sagi, Dafna. II. Series: Methods in
molecular biology (Totowa, NJ); 84
QP517.C45T736 1998
571.6—dc21 97-45056
CIP
Preface

Progress within any scientific discipline rests firmly on the development of methodologies that afford new ways to address unsolved questions. In the past decade, the development and application of novel technologies and approaches for structure determination, biochemical characterization, and molecular manipulation of signaling molecules have resulted in remarkable progress in the understanding of signal transduction pathways. Thus, whereas not so long ago small molecules known as second messengers were the only identified mediators of transmembrane signals, it is now clear that many (perhaps most) signal transduction pathways operate through complex networks of protein–protein interactions.

In recognition of this central mechanism, *Transmembrane Signaling Protocols* is largely devoted to techniques that are widely used to study molecular crosstalk between signaling molecules. The two underlying goals of the chapters assembled in this volume are: to offer technical information that allows reproduction of these methods and to provide the general principles on which these are based. In addition, introductory reviews have been included to furnish a comprehensive overview of recent advances in fundamental areas of cell signaling, and to relate specific techniques to the larger picture.

I thank the many authors who spent time and effort to contribute to this endeavor. It is hoped that *Transmembrane Signaling Protocols* will serve as a resource for future progress in the rapidly expanding field of signal transduction.

Dafna Bar-Sagi
Contents

Preface .. v
Contributors ... xi

PART I. OVERVIEWS

1 Peptide Recognition Mechanisms of Eukaryotic Signaling Modules
 Chi-Hon Lee, David Cowburn, and John Kuriyan ... 3

2 Protein–Protein Interactions in Signaling Cascades
 Bruce J. Mayer .. 33

3 Transmembrane Signaling by Receptor Oligomerization
 Mark A. Lemmon and Joseph Schlessinger .. 49

PART II. SPECIFIC TOPICS

A. USE OF PEPTIDE LIBRARIES TO STUDY TRANSMEMBRANE SIGNALING

4 Use of Peptide Libraries to Determine Optimal Substrates of Tyrosine Kinases
 Perry M. Chan and W. Todd Miller .. 75

5 Mapping the Specificity of SH3 Domains with Phage-Displayed Random-Peptide Libraries
 Andrew B. Sparks, James E. Rider, and Brian K. Kay ... 87

B. USE OF ANTISENSE TECHNOLOGY TO STUDY TRANSMEMBRANE SIGNALING

6 Selective Antagonism of Receptor Signaling Using Antisense RNA to Deplete G-Protein Subunits
 Paul R. Albert and Stephen J. Morris .. 107

7 Microinjection of Antisense Oligonucleotides and Electrophysiological Recording of Whole-Cell Currents as Tools to Identify Specific G-Protein Subtypes Coupling Hormone Receptors to Voltage-Gated Calcium Channels
 Vadim E. Degtiar, Burghardt Wittig, Günter Schultz, and Frank Kalkbrenner 123

vii
C. USE OF SINGLE-CELL ASSAYS TO ANALYZE SIGNAL TRANSDUCTION PATHWAYS

8 Oocytes Microinjection Assay to Study the MAP-Kinase Cascade
Juan Carlos Lacal .. 139

9 Mammalian Cell Microinjection Assay to Study the Function
of Rac and Rho
Anne J. Ridley .. 153

D. RECONSTITUTION OF SIGNALING COMPLEXES

10 Identification and Functional Reconstitution of Effector Proteins
for the GTPases Rac and CDC42Hs
Arie Abo .. 163

11 Cell-Free Assay System for Ras- and Rap1-Dependent Activation
of MAP-Kinase Cascade
Kazuya Shimizu, Toshihisa Ohtsuka, and Yoshimi Takai............ 173

12 Reconstitution System Based on Cytosol-Depleted Cells to Study
the Regulation of Phospholipases C and D
Shamshad Cockcroft .. 185

E. METHODS FOR ANALYZING PROTEIN–PROTEIN INTERACTIONS

13 Two-Hybrid Analysis of Ras–Raf Interactions
Linda Van Aelst ... 201

14 Cloning and Mutational Analysis of the Shc-Phosphotyrosine
Interaction/Phosphotyrosine-Binding Domain
Vijay Yajnik, Pamela Blaikie, and Ben Margolis .. 223

15 Use of Fluorescence Spectroscopy to Study the Regulation of Small
G Proteins
Tyzoon Nomanbhoy and Richard A. Cerione ... 237

F. POSTTRANSLATIONAL PROCESSING OF SIGNALING PROTEINS

16 Prenylation Assays for Small GTPases
Miguel C. Seabra and Guy L. James ... 251

17 Analysis of Myristoylated and Palmitoylated Src Family Proteins
Amy Wolven, Wouter van’t Hof, and Marilyn D. Resh 261

18 Ultracentrifugation Technique for Measuring the Binding of Peptides
and Proteins to Sucrose-Loaded Phospholipid Vesicles
Carolyn A. Buser and Stuart McLaughlin ... 267
Contents

19 Biochemical and Biological Analyses of Farnesyl-Protein Transferase Inhibitors
 Nancy E. Kohl, Kenneth S. Koblan, Charles A. Omer, Allen Oliff, and Jackson B. Gibbs.................................283

G. KINASES AND PHOSPHATASES IN SIGNAL TRANSDUCTION

20 Identification and Characterization of Small GTPase-Associated Kinases
 Edward Manser, Thomas Leung, and Louis Lim.................................295

21 Functional Studies of Dual-Specificity Phosphatases
 Hong Sun ...307

Index ..319
Contributors

ARIE ABO • Onyx Pharmaceuticals, Richmond, CA
PAUL R. ALBERT • Neuroscience Research Institute, University of Ottawa, Canada
PAMELA BLAIKIE • New York University School of Medicine, New York
CAROLYN A. BUSER • Department of Physiology and Biophysics, Health Sciences Center, State University of New York, Stony Brook, NY
RICHARD A. CERIONE • Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, NY
PERRY M. CHAN • Department of Physiology and Biophysics, State University of New York at Stony Brook, NY
SHAMSHAD COCKROFT • Department of Physiology, Rockefeller Building, University College London, UK
DAVID COWBURN • Laboratory of Physical Biochemistry, The Rockefeller University, New York
VADIM E. DEGTIAR • Institut für Pharmakologie, Freie Universität Berlin, Germany
JACKSON B. GIBBS • Department of Cancer Research, Merck Research Laboratories, West Point, PA
WOUTER VAN’T HOF • Program in Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York
GUY L. JAMES • Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
FRANK KALKBRENNER • Institut für Pharmakologie, Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Germany
BRIAN K. KAY • Department of Biology, University of North Carolina at Chapel Hill, NC
KENNETH S. KOBLAN • Department of Cancer Research, Merck Research Laboratories, West Point, PA
NANCY E. KOHL • Department of Cancer Research, Merck Research Laboratories, West Point, PA
JOHN KURIYAN • Laboratories of Molecular Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York

xi
Contributors

Juan Carlos Lacal • Institute de Investigaciones Biomédicas, Madrid, Spain
Chi-Hon Lee • Laboratories of Molecular Biophysics, The Rockefeller University, New York
Mark A. Lemmon • Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA
Thomas Leung • Glaxo-IMCB Group, Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Singapore
Louis Lim • Glaxo-IMCB Group, Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Singapore; Institute of Neurology, London, UK
Edward Manser • Glaxo-IMCB Group, Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Singapore
Ben Margolis • Howard Hughes Medical Institute, Department of Internal Medicine and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
Bruce J. Mayer • Howard Hughes Medical Institute, Children's Hospital and Department of Molecular Genetics, Harvard Medical School, Boston, MA
Stuart McLafflin • Department of Physiology and Biophysics, Health Sciences Center, State University of New York, Stony Brook, NY
W. Todd Miller • Department of Physiology and Biophysics, State University of New York at Stony Brook, NY
Stephen J. Morris • Neuroscience Research Institute, University of Ottawa, Canada
Tyzoon Nomanbhoj • Department of Pharmacology, College of Veterinary Medicine, Cornell University, Ithaca, NY
Toshihisa Ohtsuka • Department of Molecular Biology and Biochemistry, Osaka University Medical School, Osaka, Japan
Allen Oliff • Department of Cancer Research, Merck Research Laboratories, West Point, PA
Charles A. Omer • Department of Cancer Research, Merck Research Laboratories, West Point, PA
Marilyn D. Resh • Program in Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York; Graduate Program in Cell Biology and Genetics, and Biochemistry, Cornell University Graduate School of Medical Sciences, New York
James E. Rider • Department of Biology, University of North Carolina at Chapel Hill, NC
Contributors

ANNE J. RIDLEY • Ludwig Institute for Cancer Research, London, UK
JOSEPH SCHLESSINGER • Department of Pharmacology, New York University Medical Center, New York
GÜNTER SCHULTZ • Institut für Pharmakologie, Freie Universität Berlin, Germany
MIGUEL C. SEABRA • Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
KAZUYA SHIMIZU • Department of Molecular Biology and Biochemistry, Osaka University Medical School, Osaka, Japan
ANDREW B. SPARKS • Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC
HONG SUN • Department of Genetics, Yale University School of Medicine, New Haven, CT
YOSHIMI TAKAI • Department of Molecular Biology and Biochemistry, Osaka University Medical School, Osaka, Japan; Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
LINDA VAN AELST • Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
BURGHARDT WITTING • Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Germany
AMY WOLVEN • Program in Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York; Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York
VIJAY YAJNIK • New York University School of Medicine, New York; Present Address: Medical Services, Massachusetts General Hospital, Boston, MA