Electroporation Protocols for Microorganisms
Methods in Molecular Biology™

John M. Walker, Series Editor

47. Electroporation Protocols for Microorganisms, edited by Jac A. Nickoloff, 1995
42. ELISA: Theory and Practice, by John R. Crowther, 1995
40. Protein Stability and Folding, edited by Bret A. Shirley, 1995
34. Immunocytochemical Methods and Protocols, edited by Lorette C. Javois, 1994
30. DNA-Protein Interactions, edited by G. Geoff Kneale, 1994
23. DNA Sequencing Protocols, edited by Hugh G. Griffin and Annette M. Griffin, 1993

Earlier volumes are still available. Contact Humana for details.
Preface

Electroporation is one of the most widespread techniques used in modern molecular genetics. It is most commonly used to introduce DNA into cells for investigations of gene structure and function, and in this regard, electroporation is both highly versatile, being effective with nearly all species and cell types, and highly efficient. For many cell types, electroporation is either the most efficient or the only means known to effect gene transfer. However, exposure of cells to brief, high-intensity electric fields has found broad application in other aspects of biological research, and is now routinely used to introduce other types of biological and analytic molecules into cells, to induce cell–cell fusion, and to transfer DNA directly between different species.

The first seven chapters of Electroporation Protocols for Microorganisms describe the underlying theory of electroporation, the commercially available instrumentation, and a number of specialized electroporation applications, such as cDNA library construction and interspecies DNA electrotransfer. Each of the remaining chapters presents a well developed method for electrotransformation of a particular bacterial, fungal, or protist species. These chapters also serve to introduce those new to the field the important research questions that are currently being addressed with particular organisms, highlighting both the major advantages and limitations of each species as a model organism, and explaining the roles that electroporation has played in the development of the molecular genetic systems currently in use. Microorganisms continue to play key roles in the development of our understanding of basic biological processes, as well as being important human, plant, and animal disease vectors. Because electroporation has such broad application, protocols for all microorganisms that have been successfully electrotransformed could not be included in this volume. However, protocols are included for a diverse array of bacterial, fungal, and
protist species, including many that are important in human disease, and most chapters provide literature references for electroporation protocols of related species.

Although many of the procedures for electrotransformation of different organisms are similar, subtle differences are often important, especially when an experimental design requires optimum transformation. For example, electroporation efficiency is often strongly affected by growth conditions and growth phase at the time of cell harvest. Therefore, each chapter provides detailed information about growth conditions for the particular organism. Because specific approaches are not always successful, comparisons of procedures used with similar (or even quite different) organisms might provide valuable insight to researchers working to solve a particular problem. In addition, the chapter on electroporation theory can be used to develop new protocols or modify existing ones. In sum, I feel that this volume will be an especially valuable resource for molecular geneticists working with the widest variety of cell systems, both with respect to technical hints and troubleshooting advice, which are presented as "Notes" at the end of each protocol, and as a guide to the various applications of electroporation in different model systems.

I want to express my gratitude to all of the contributors, for both their timely submissions and their many suggestions. I also want to thank Debra Horensky for clarifying many fine points of microbial taxonomy, and for assistance in the selection of topics relevant to human disease. And I thank John Walker for his considerable assistance and thoughtful advice.

Jac A. Nickoloff
Contents

Preface ... v
Contents of Companion Volumes ... xi
Contributors .. xv

Ch. 1. Electroporation Theory: Concepts and Mechanisms,
James C. Weaver ... 1

Ch. 2. Instrumentation,
Gunter A. Hofmann .. 27

Ch. 3. Direct Plasmid Transfer Between Bacterial Species and Electrocuimg,
Helen L. Withers ... 47

Ch. 4. Transfer of Episomal and Integrated Plasmids from *Saccharomyces cerevisiae* to *Escherichia coli* by Electroporation,
Laura Gunn, Jennifer Whelden, and Jac A. Nickoloff .. 55

Ch. 5. Production of cDNA Libraries by Electroporation,
Christian E. Gruber ... 67

Ch. 6. Electroporation of RNA into *Saccharomyces cerevisiae,*
Daniel R. Gallie .. 81

Ch. 7. Electrofusion of Yeast Protoplasts,
Herbert Weber and Hermann Berg .. 93

Ch. 8. *Escherichia coli* Electrotransformation,
Elizabeth M. Miller and Jac A. Nickoloff .. 105

Ch. 9. Electrotransformation in *Salmonella,*
Kenneth E. Sanderson, P. Ronald MacLachlan, and Andrew Hessel 115

Ch. 10. Electrotransformation of *Pseudomonas,*
Jonathan J. Dennis and Pamela A. Sokol ... 125

Ch. 11. Electroporation of *Xanthomonas,*
Teresa J. White and Carlos F. Gonzalez ... 135

Ch. 12. Transformation of Species with Suicide and Broad Host-Range Plasmids,
John R. McQuiston, Gerhardt G. Schurig, Nammalwar Sriranganathan, and Stephen M. Boyle .. 143
Contents

Ch. 13. Electroporation of *Francisella tularensis*,
Gerald S. Baron, Svetlana V. Myltseva, and Francis E. Nano........ 149

Ch. 14. A Simple and Rapid Method for Transformation of *Vibrio* Species
by Electroporation,
Hajime Hamashima, Makoto Iwasaki, and Takeyoshi Arai............. 155

Ch. 15. Genetic Transformation of *Bacteroides* spp. Using Electroporation,
C. Jeffrey Smith.. 161

Ch. 16. Electrottransformation of *Agrobacterium*,
Jhy-Jhu Lin.. 171

Ch. 17. Electroporation of *Helicobacter pylori*,
Ellyn D. Segal... 179

Ch. 18. Electrottransformation of *Streptococci*,
Robert E. McLaughlin and Joseph J. Ferretti......................... 185

Ch. 19. Transformation of *Lactococcus* by Electroporation,
Helge Holo and Ingolf F. Nes.. 195

Ch. 20. Transformation of *Lactobacillus* by Electroporation,
Thea W. Aukrust, May B. Brurberg, and Ingolf F. Nes............. 201

Ch. 21. Electrottransformation of *Staphylococci*,
Jean C. Lee.. 209

Ch. 22. Electroporation and Efficient Transformation of *Enterococcus faecalis*
Grown in High Concentrations of Glycine,
Brett D. Shepard and Michael S. Gilmore.................................... 217

Ch. 23. Introduction of Recombinant DNA into *Clostridium* spp.,
Mary K. Phillips-Jones.. 227

Ch. 24. Electroporation of *Mycobacteria*,
T. Parish and N. G. Stoker... 237

Ch. 25. Electrottransformation of the Spirochete *Borrelia burgdorferi*,
D. Scott Samuels... 253

Ch. 26. Yeast Transformation and the Preparation of Frozen Spheroplasts
for Electroporation,
Lisa Stowers, James Gautsch, Richard Dana,
and *Merl F. Hoekstra*... 261

Ch. 27. Ten-Minute Electrottransformation of *Saccharomyces cerevisiae*,
Martin Grey and Martin Brendel... 269

Ch. 28. Electroporation of *Schizosaccharomyces pombe*,
Mark T. Hood and C. S. Stachow... 273

Ch. 29. Gene Transfer by Electroporation of Filamentous Fungi,
M. Kapoor.. 279

Ch. 30. Transformation of *Candida maltosa* by Electroporation,
Dietmar Becher and Stephen G. Oliver.. 291

Ch. 31. Electroporation of *Physarum polycephalum*,
Timothy G. Burland and Juliet Bailey.. 303
Ch. 32. Electroporation of Dictyostelium discoideum,
David Knecht and Ka Ming Pang ... 321
Ch. 33. Gene Transfer by Electroporation of Tetrahymena,
Jacek Gaertig and Martin A. Gorovsky 331
Ch. 34. Transfection of the African and American Trypanosomes,
John M. Kelly, Martin C. Taylor, Gloria Rudenko,
and Pat A. Blundell ... 349
Ch. 35. Electroporation in Giardia lamblia,
A. L. Wang, Tiina Sepp, and C. C. Wang 361

Index ... 369
The contents for the companion volume

Animal Cell Electroporation and Electrofusion Protocols

Ch. 1. Electroporation Theory: Concepts and Mechanisms, James C. Weaver

Ch. 2. Effects of Pulse Length and Strength on Electroporation Efficiency, Sek Wen Hui

Ch. 3. Instrumentation, Gunter A. Hoffmann

Ch. 4. The Introduction of Proteins into Mammalian Cells by Electroporation, William F. Morgan and Joseph P. Day

Ch. 5. Electroporation of Antigen-Presenting Cells for T-Cell Recognition and Cytotoxic T-Lymphocyte Priming, Weisan Chen and James McCluskey

Ch. 6. Electroporation of Antibodies into Mammalian Cells, Paul L. Campbell, James McCluskey, Jing Ping Yeo, and Ban-Hock Toh

Ch. 7. Electroporation of Adherent Cells In Situ for the Introduction of Nonpermeant Molecules, Leda H. Raptis, Kevin L. Firth, Heather L. Brownell, Andrea Todd, W. Craig Simon, Brian M. Bennett, Leslie W. MacKenzie, and Maria Zannis-Hadjopoulos

Ch. 8. Electrottransformation of Chinese Hamster Ovary Cells, Danielle Gioioso Taghian and Jac A. Nickoloff

Ch. 9. Electroporation of Rat Pituitary Cells, Ruth H. Paulssen, Eyvind J. Paulssen, and Kaare M. Gautvik

Ch. 10. Electroporation of Plasmid DNA into Normal Human Fibroblasts, F. Andrew Ray

Ch. 11. Electroporation-Mediated Gene Transfer into Hepatocytes, Alphonse Le Cam

Ch. 12. Electroporation of Human Lymphoblastoid Cells, Fen Xia and Howard L. Lieber

Ch. 13. The Use of Electroporated Bovine Spermatozoa to Transfer Foreign DNA into Oocytes, Marc Gagné, François Pothier, and Marc-André Sirard

Ch. 14. Electroporation of Embryonic Stem Cells for Generating Transgenic Mice and Studying In Vitro Differentiation, John S. Mudgett and Thomas J. Livelli
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch. 15</td>
<td>Electrotransfection with “Intracellular” Buffer,</td>
<td>Maurice J. B. van den Hoff, Vincent M. Christoffels, Wil T. Labruyère, Antoon F. M. Moorman, and Wouter H. Lamers</td>
</tr>
<tr>
<td>Ch. 16</td>
<td>Effect of Cis-Located Human Satellite DNA on Electroporation Efficiency</td>
<td>Djennan Saint-Dic and Michael S. Dubow</td>
</tr>
<tr>
<td>Ch. 17</td>
<td>Quantitation of Transient Gene Expression</td>
<td>Michael K. Showe and Louise C. Showe</td>
</tr>
<tr>
<td>Ch. 18</td>
<td>Stable Integration of Vectors at High Copy Number for High-Level Expression in Animal Cells</td>
<td>James Barsoum</td>
</tr>
<tr>
<td>Ch. 19</td>
<td>Electroporation of Drosophilia Embryos</td>
<td>K. Puloma Kamdar, Thao N. Wagner, and Victoria Finnerty</td>
</tr>
<tr>
<td>Ch. 20</td>
<td>Transformation of Fish Cells and Embryos</td>
<td>Koji Inoue, Jun-ichiro Hata, and Shinya Yamashita</td>
</tr>
<tr>
<td>Ch. 21</td>
<td>Electroporation of Cardiac Cells</td>
<td>Leslie Tung</td>
</tr>
<tr>
<td>Ch. 22</td>
<td>Electroporation for Gene Therapy</td>
<td>Kathryn Matthews, Sukhendu B. Dev, Frances Toneguzzo, and Armand Keating</td>
</tr>
<tr>
<td>Ch. 23</td>
<td>Electofusion of Mammalian Cells</td>
<td>Kenneth L. White</td>
</tr>
<tr>
<td>Ch. 24</td>
<td>Stabilizing Antibody Secretion of Human Epstein Barr Virus-Activated B-Lymphocytes</td>
<td>Susan Perkins and Steven K. H. Foung</td>
</tr>
<tr>
<td>Ch. 25</td>
<td>Electofusion of Mammalian Oocytes and Embryonic Cells</td>
<td>Josef Fulka, Jr., Robert M. Moor, and Josef Fulka</td>
</tr>
<tr>
<td>Ch. 26</td>
<td>Nuclear Transfer in Bovine Embryos</td>
<td>Akira Iritani and Tsauku Mitani</td>
</tr>
<tr>
<td>Ch. 27</td>
<td>Electofusion of Mouse Embryos to Produce Tetraploids</td>
<td>Ulrich Petzoldt</td>
</tr>
<tr>
<td>Ch. 28</td>
<td>Spectrofluorometric Assay for Cell–Tissue Electofusion</td>
<td>Richard Heller</td>
</tr>
<tr>
<td>Ch. 29</td>
<td>Cytometric Detection and Quantitation of Cell–Cell Electofusion Products</td>
<td>Mark J. Jaroszeski, Richard Gilbert, and Richard Heller</td>
</tr>
</tbody>
</table>

Index
CONTENTS FOR THE COMPANION VOLUME

Plant Cell Electroporation and Electrofusion Protocols

Ch. 1. Electroporation Theory: Concepts and Mechanisms,
James C. Weaver

Ch. 2. Effects of Pulse Length and Strength on Electroporation Efficiency,
Sek Wen Hui

Ch. 3. Instrumentation,
Gunter A. Hoffmann

Ch. 4. Electroporation of Agrobacterium tumefaciens,
Amke den Dulk-Ras and Paul J. J. Hooykaas

Ch. 5. Electroporation of DNA into the Unicellular Green Alga Chlamydomonas reinhardtii,
Laura R. Keller

Ch. 6. Pollen Electrotransformation in Tobacco,
James A. Saunders and Benjamin F. Matthews

Ch. 7. Electroporation of Tobacco Leaf Protoplasts Using Plasmid DNA or Total Genomic DNA,
Patrick Gallois, Keith Lindsey, and Renee Malone

Ch. 8. Electroporation of Brassica,
Frank Siegemund and Klaus Eimert

Ch. 9. Transformation of Maize by Electroporation of Embryos,
Carol A. Rhodes, Kathleen A. Marrs, and Lynn E. Murry

Ch. 10. Transient Gene Expression Analysis in Electroporated Maize Protoplasts,
Kathleen A. Marrs and J. C. Carle Urioste

Ch. 11. Reporter Genes and Transient Assays for Plants,
Benjamin F. Matthews, James A. Saunders, Joan S. Gebhardt, Jhy-Jhu Lin, and Susan M. Koehler

Ch. 12. Electrofusion of Plant Protoplasts: Selection and Screening for Somatic Hybrids of Nicotiana,
Harold N. Trick and George W. Bates

Ch. 13. Protoplast Electrofusion and Regeneration in Potato,
Jianping Cheng and James A. Saunders

Ch. 14. Polymer-Supported Electrofusion of Protoplasts: A Novel Method and a Synergistic Effect,
Lei Zhang

Index
Contributors

TAKETOSHI ARAI • Laboratory of Microbiology, Showa College of Pharmaceutical Sciences, Tokyo, Japan
THEA W. AU KRUST • MATFORSK, Norwegian Food Research Institute, Ås, Norway
JULIET BAILEY • McArdle Laboratory, Madison, WI
GERALD S. BARON • Department of Biochemistry and Microbiology, University of Victoria, Canada
HERMANN BERG • Institute of Molecular Biotechnology, Jena, Germany
DIETMAR BECHER • Institute of Genetics and Biochemistry, E. M. Arendt University, Greifswald, Switzerland
PAT A. BLUNDELL • London School of Hygiene and Tropical Medicine, London, UK
STEPHEN M. BOYLE • Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
MARTIN BRENDEL • Institute for Microbiology, J. W. Goethe University, Frankfurt-am-Main, Germany
MAY B. BRURBERG • Laboratory of Microbial Gene Technology Agricultural University of Norway, Ås, Norway
TIMOTHY G. BURLAND • McArdle Laboratory, Madison, WI
RICHARD DAN A • BIO 101, Inc., La Jolla, CA
JONATHAN J. DEN NIS • Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Canada
JOSEPH J. FERR ET TI • Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
Jacek Gaertig • Department of Zoology, The University of Georgia, Athens, GA
Daniel R. Gallie • Department of Biochemistry, University of California, Riverside, CA
James Gautsch • BIO 101, Inc., La Jolla, CA
Michael S. Gilmore • Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
Carlos F. Gonzalez • Department of Plant Pathology and Microbiology, Texas A & M University, College Station, TX
Martin A. Gorovsky • Department of Zoology, The University of Georgia, Athens, GA
Martin Grey • Institute for Microbiology, J. W. Goethe University, Frankfurt-am-Main, Germany
Christian E. Gruber • Research and Development, Life Technologies, Gaithersburg, MD
Laura Gunn • Department of Cancer Biology, Harvard University School of Public Health, Boston, MA
Hajime Hamashima • Laboratory of Microbiology, Showa College of Pharmaceutical Sciences, Tokyo, Japan
Andrew Hessel • Salmonella Genetic Stock Centre, Department of Biological Sciences, University of Calgary, Canada
Merl F. Hoekstra • ICOS Corporation, Bothell, WA
Gunter A. Hofmann • Genetronics, Inc., San Diego, CA
Helge Holm • Laboratory of Microbial Gene Technology, Agricultural University of Norway, Ås, Norway, and Norwegian Dairies Association, Oslo, Norway
Mark T. Hood • Department of Biology, Boston College, Chestnut Hill, MA
Makoto Iwasaki • Laboratory of Microbiology, Showa College of Pharmaceutical Sciences, Tokyo, Japan
M. Kapoor • Department of Biological Sciences, University of Calgary, Canada
John M. Kelly • London School of Hygiene and Tropical Medicine, London, UK
David Knecht • Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT
Contributors

JEAN C. LEE • Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
JHY-JHU LIN • Agriculture Biotechnology and Molecular Biology R & D, Life Technologies Inc., Gaithersburg, MD
P. RONALD MACLACHLAN • Salmonella Genetic Stock Centre, Department of Biological Sciences, University of Calgary, Canada. Present Address: Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
ROBERT E. MCLAUGHLIN • Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
JOHN R. MCQUISTON • Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
ELIZABETH M. MILLER • Department of Cancer Biology, Harvard University School of Public Health, Boston, MA
SVETLANA V. MYLTEVA • Department of Biochemistry and Microbiology, University of Victoria, Canada
FRANCIS E. NANO • Department of Biochemistry and Microbiology, University of Victoria, Canada
INGOLF F. NES • Laboratory of Microbial Gene Technology, Agricultural University of Norway, Ås, Norway
JAC A. NICKOLOFF • Department of Cancer Biology, Harvard University School of Public Health, Boston, MA
STEPHEN G. OLIVER • Institute of Genetics and Biochemistry, E. M. Arendt University, Greifswald, Switzerland
KA MING PANG • Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT
T. PARISH • Bacterial Molecular Genetics Unit, Department of Clinical Sciences, London School of Hygiene and Tropical Medicine, London, UK
MARY K. PHILLIPS-JONES • Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
Contributors

GLORIA RUDENKO • London School of Hygiene and Tropical Medicine, London, UK
D. SCOTT SAMUELS • Bacterial Pathogenesis Section, Rocky Mountain Laboratories Microscopy Branch, National Institute of Allergy and Infectious Diseases, Hamilton, MT. Present Address: Division of Biological Sciences, University of Montana, Missoula, MT
KENNETH E. SANDERSON • Salmonella Genetic Stock Centre, Department of Biological Sciences, University of Calgary, Canada
GERHARDT G. SCHURIG • Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
ELLYN D. SEGAL • Department of Microbiology and Immunology, Digestive Disease Center, Stanford University, Stanford, CA
TIINA SEPP • Department of Pharmaceutical Chemistry, University of California, San Francisco, CA
BRETT D. SHEPARD • Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
C. JEFFREY SMITH • Department of Microbiology and Immunology, East Carolina University, Greenville, NC
PAMELA A. SOKOL • Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Canada
NAMMALWAR SRIKIRANATHAN • Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
C. S. STACHOW • Department of Biology, Boston College, Chestnut Hill, MA
N. G. STOKER • Bacterial Molecular Genetics Unit, Department of Clinical Sciences, London School of Hygiene and Tropical Medicine, London, UK
LISA STOWERS • BIO 101, Inc., La Jolla, CA
Contributors

MARTIN C. TAYLOR • London School of Hygiene and Tropical Medicine, London, UK

C. C. WANG • Department of Pharmaceutical Chemistry, University of California, San Francisco, CA

A. L. WANG • Department of Pharmaceutical Chemistry, University of California, San Francisco, CA

JAMES C. WEAVER • Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA

HERBERT WEBER • Jena Inc., Jena, Germany

JENNIFER WHELDEN • Department of Cancer Biology, Harvard University School of Public Health, Boston, MA

TERESA J. WHITE • Department of Plant Pathology and Microbiology, Texas A & M University, College Station, TX

HELEN L. WITHERS • Department of Genetics, Cambridge University, Cambridge, UK. Present Address: Department of Microbiology, Biomedical Center, Uppsala College, Uppsala, Sweden