Enzyme and Microbial Biosensors

5. Biopesticides: *Use and Delivery*, edited by Franklin R. Hall and Julius J. Menn, 1998

1. Immobilization of Enzymes and Cells, edited by Gordon F. Bickerstaff, 1997
Enzyme and Microbial Biosensors

Techniques and Protocols

Edited by

Ashok Mulchandani

University of California, Riverside, CA

and

Kim R. Rogers

US-EPA, Las Vegas, NV

Humana Press • Totowa, New Jersey
Preface

In 1962 Clark and Lyons pioneered the concept of a biosensor. They proposed immobilizing enzymes at electrochemical detectors to form “enzyme electrodes” in order to expand the analyte range of their base sensor. Since then, the field of biosensors has greatly expanded. Some of the reasons for the expansion include both advances in signal transduction technologies and the incorporation of different biological sensing elements (Table 1).

As a consequence, there are now a bewildering array of permutations of the biological sensing element and signal transducers that can be used to construct a biosensor. The purpose of the two volumes of Protocols and Techniques in Biosensors is to provide a basic reference tool and starting point for use by graduate students, postdoctoral and senior researchers, and technicians in academics, industry, and government research establishments, to enable rapid entry into the field of biosensors.

There are a variety of approaches that researchers employ to select a combination of bioaffinity elements and signal transducers. One commonly used approach is to identify the compound or compounds of interest; identify the biological molecule that yields an appropriate recognition/selectivity and dynamic concentration range for the assay; and choose an assay format and signal transduction technology that will meet the analytical requirements for the proposed application. This volume, Enzyme and Microbial Biosensors: Techniques and Protocols, describes a variety of transduction technologies that have been interfaced to enzymes and microorganisms. The volume, although not an exhaustive treatise, provides a detailed “step-by-step” description for a variety of enzyme- and microbial-based biosensor techniques that will allow the novice or experienced investigator to expand into new areas of research most appropriate for their analytical needs.

Enzyme and Microbial Biosensors: Techniques and Protocols is divided into two sections covering enzyme and microbial biosensors. Chapter 1 provides an overview of the principles relevant to the design and operational features of enzyme-based biosensors. The subsequent chapters in the first section provide detailed protocols for enzyme biosensors based on electrochemical, thermal, and optical techniques. Included in the second section are techniques, such as oxygen gas electrode and optical techniques, in which the microor-
ganism is interfaced to the signal transducer. Each chapter also includes notes that provide information not usually reported in journal articles that can be particularly useful for those not familiar with construction and operation of a specific device or technique.

We are fortunate to have assembled contributions from world-class authorities in this field and we sincerely thank them. In their enthusiasm for the field of biosensor research, they have produced articles that we believe will be of unusual help to the increasing number of researchers in this field. We are indebted to Prof. John Walker, the Series Editor for *Methods in Molecular Biology*™, for his careful attention in reviewing the manuscripts included in this volume. Last but not least, we warmly acknowledge the gracious support of our families.

Ashok Mulchandani

Kim R. Rogers
Contents

Preface .. v
Companion Volume Contents .. ix
List of Contributors ... xi

PART I. ENZYME BIOSENSORS ... 1

1 Principles of Enzyme Biosensors
 Ashok Mulchandani .. 3

2 Enzyme Biosensors Based on pH Electrode
 Canh Tran Minh ... 15

3 Enzyme Biosensors Based on Gas Electrodes
 Marco Mascini and Gianna Marrazza .. 23

4 Enzyme Biosensors Based on ISFETs
 Roland Ulber and Thomas Schepfer .. 35

5 Enzyme Biosensors Based on Oxygen Detection
 F. W. Scheller, D. Pfeiffer, F. Lisdat, C. Bauer, and N. Gajovic 51

6 Enzyme Biosensors Based on the Hydrogen Peroxide Electrode
 John Woodward ... 67

7 Enzyme Biosensors Based on Mediator-Modified Carbon Paste Electrode
 Prem C. Pandey ... 81

8 Enzyme Biosensors Based on Electron Transfer Between Electrode and Immobilized Peroxidases
 Lo Gorton, Elisabeth Csöregi, Tautgirdas Ruzgas,
 Irina Gazaryan, and György Marko-Varga 93

9 Enzyme Biosensors Based on Redox Polymers
 Latha Shankar, Michael G. Garguilo, and Adrian C. Michael 121

10 Enzyme Biosensors Based on Metallized Carbon Electrodes
 Joseph Wang ... 133

11 Enzyme Biosensors Based on Conducting Polymers
 Wolfgang Schuhmann .. 143

12 Enzyme Sensors Based on Conductimetric Measurement
 Norman F. Sheppard, Jr. and Anthony Guiseppi-Eile 157
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Enzyme Biosensors Based on Thermal Transducer/Thermistor</td>
<td>Kumaran Ramanathan, Masoud Khayyami, and Bengt Danielsson</td>
<td>175</td>
</tr>
<tr>
<td>14</td>
<td>Enzyme Biosensors Based on Fluorometric Detection</td>
<td>Ashutosh Sharma</td>
<td>187</td>
</tr>
<tr>
<td>15</td>
<td>Microbial Biosensors Based on Oxygen Electrodes</td>
<td>Klaus Riedel</td>
<td>197</td>
</tr>
<tr>
<td>16</td>
<td>Microbial Biosensors Based on Respiratory Inhibition</td>
<td>Yoshiko Arikawa, Kazunori Ikebukuro, and Isao Karube</td>
<td>225</td>
</tr>
<tr>
<td>17</td>
<td>Microbial Biosensors Based on Potentiometric Detection</td>
<td>Aleksandr L. Simonian, Evgenia I. Rainina, and James R. Wild</td>
<td>237</td>
</tr>
<tr>
<td>18</td>
<td>Microbial Biosensors Based on Optical Detection</td>
<td>Udayakumar Matrubutham and Gary S. Sayler</td>
<td>249</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
<td>257</td>
</tr>
</tbody>
</table>
Contents for the companion volume:
Affinity Biosensors

Preface
Companion Volume Contents
List of Contributors

PART I. AFFINITY BIOSENSORS

1 Principles of Affinity-Based Biosensors
 Kim R. Rogers

2 Immunobiosensors Based on Thermistors
 Kumaran Ramanathan, Masoud Khayyami, and Bengt Danielsson

3 Affinity Biosensing Based on Surface Plasmon Resonance Detection
 Bo Liedberg and Knut Johansen

4 Immunosensors Based on Piezoelectric Crystal Device
 Marco Mascini, Maria Minunni, George G. Guibault, and Robert Carter

5 Immunobiosensors Based on Evanescent Wave Excitation
 Randy M. Wadkins and Frances S. Ligler

6 A Galactose-Specific Affinity Hollow Fiber Sensor Based on Fluorescence Resonance Energy Transfer
 Ralph Ballerstadt and Jerome S. Schultz

7 Fiberoptic Immunosensors with Continuous Analyte Response
 J. Rex Astles, W. Greg Miller, C. Michael Hanbury, and F. Philip Anderson

8 Immunobiosensors Based on Grating Couplers
 Ursula Bilitewski, Frank Bier, and Albrecht Brandenberg

9 Receptor Biosensors Based on Optical Detection
 Kim R. Rogers and Mohyee E. Eldefrawi

PART II. BIOSENSOR-RELATED TECHNIQUES

10 Immunobiosensors Based on Ion-Selective Electrodes
 Hanna Radecka and Yoshio Umezawa

11 Biosensors Based on DNA Intercalation Using Light Polarization
 John J. Horvath
Companion Volume Contents

12 ISFET Affinity Sensor
 Geert A. J. Besselink and Piet Bergveld
13 Liposome-Based Immunomigration Assays
 Matthew A. Roberts and Richard A. Durst
14 Isolated Receptor Biosensors Based on Bilayer Lipid Membranes
 Masao Sugawara, Ayumi Hirano, and Yoshio Umezawa
15 Eukaryotic Cell Biosensor: The Cytosensor Microphysiometer
 Amira T. Eldefarwi, Cheng J. Cao, Vania I. Cortes,
 Robert J. Mioduszewski, Darrel E. Menking,
 and James J. Valdes

Index
Contributors

YOSHIKO ARIKAWA • Research Center for Advanced Science and Technology, University of Tokyo, Japan
C. BAUER • Institute of Biochemistry and Molecular Physiology, University of Potsdam, Berlin, Germany
ELISABETH CSOREGI • Department of Analytical Chemistry, Chemical Center, Lund University, Lund, Sweden
BENGST DANIELSSON • Department of Pure and Applied Biochemistry, University of Lund, Sweden
N. GAJOVIC • Institute of Biochemistry and Molecular Physiology, University of Potsdam, Berlin, Germany
MICHAEL G. GARGUJO • Department of Chemistry, University of Pittsburgh, PA
IRINA GAZARAYAN • Department of Chemical Enzymology, Moscow State University, Moscow, Russia
LO GORTON • Department of Analytical Chemistry, Chemical Center, Lund University, Lund, Sweden
ANTHONY GUISEPPI-ELIE • Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
KAZUNORI IKEBUKURO • Research Center for Advanced Science and Technology, University of Tokyo, Japan
ISAO KARUBE • Research Center for Advanced Science and Technology, University of Tokyo, Japan
MASOUD KHAYYAMI • Department of Pure and Applied Biochemistry, University of Lund, Sweden
F. LISDAT • Institute of Biochemistry and Molecular Physiology, University of Potsdam, Berlin, Germany
I. LUNDSTROM • Laboratory of Applied Physics, Linkoping University, Linkoping, Sweden
GYORGY MARKO-VARGA • Department of Bioanalytical Chemistry, Astra Draco, Lund, Sweden
GIANNA MARAZZA • Dipartimento di Sanita Pubblica Epidemiologia e Chimica Analitica Ambientala, Universita di Firenze, Italy
MARCO MASCINI • Dipartimento di Sanita Pubblica Epidemiologia e Chimica Analitica Ambientala, Universita di Firenze, Italy
UDAYAKUMAR MATRUBUTHAM • Center for Environmental Biotechnology,
The University of Tennessee, Knoxville, TN
ADRIAN C. MICHAEL • Department of Chemistry, University of Pittsburgh, PA
ASHOK MULCHANDANI • Marlan and Rosemary Bourns College of Engineering, University of California, Riverside, CA
PREM C. PANDEY • Department of Chemistry, Banaras Hindu University, Varanasi, India
D. PFEIFFER • BST BioSensor Technologie, GmbH Buchholzer, Berlin, Germany
HANNA RADECKA • Department of Chemistry, School of Science, The University of Tokyo, Japan
EVGENIA I. RAININA • Biochemistry and Biophysics Department, Texas A & M University, College Station, TX
KUMARAN RAMANATHAN • Department of Pure and Applied Biochemistry, University of Lund, Sweden
KLAUS RIEDEL • Dr. Bruno Lange GmbH, Dusseldorf, Germany
TAUTGIRDAS RUZGAS • Institute of Biochemistry, Vilnius, Lithuania
GARRY S. SAYLER • Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN
F. SCHELLER • Institute of Biochemistry and Molecular Physiology, University of Potsdam, Berlin, Germany
THOMAS SCHEPER • Institute of Technical Chemistry, University of Hannover, Germany
WOLFGANG SCHUHMANN • Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Freising-Weihenstephan, Germany
LATHA SHANKAR • Department of Chemistry, University of Pittsburgh, PA
ASHUTOSH SHARMA • University of North London, UK
NORMAN F. SHEPPARD, JR. • Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
ALEXANDR L. SIMONIAN • Biochemistry and Biophysics Department, Texas A & M University, College Station, TX
CANH TRAN-MINH • Centre SPIN/Biotechnology, Ecole Nationale Superieur des Mines, St. Etienne, France
ROLAND UBER • Institute of Technical Chemistry, University of Hannover, Germany
JOSEPH WANG • Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM
JAMES R. WILD • Biochemistry and Biophysics Department, Texas A & M University, College Station, TX
JOHN R. WOODWARD • GLI International, Inc., Milwaukee, WI