Inflammation Protocols
Preface

Inflammation has been described as the basis of many pathologies of human disease. When one considers the updated signs of inflammation, they would be vasodilation, cell migration, and, in the case of chronic inflammation, cell proliferation, often with an underlying autoimmune basis. Generally, inflammation may be divided into acute, chronic, and autoimmune, although the editors believe that most, if not all, chronic states are often the result of an autoimmune response to an endogenous antigen. Thus, a proper understanding of the inflammatory basis may provide clues to new therapeutic targets not only in classical inflammatory diseases, but atherosclerosis, cancer, and ischemic heart disease as well.

The lack of advances in classical inflammatory diseases, such as rheumatoid arthritis, may in part arise from a failure to classify the disease into different forms. That different forms exist is exemplified in patients with differing responses to existing antiinflammatory drugs, ranging from nonresponders to very positive responders for a particular nonsteroidal antiinflammatory drug (NSAID). Though researchers have progressively unraveled the mechanisms, the story is far from complete. It should also be noted that the inflammatory response is part of the innate immune response, or to use John Hunter’s words in 1795, “inflammation is a salutary response.” That may be applied in particular to the defensive response to invading microorganisms.

Because of the large multidisciplinary scope of inflammation research, it is inevitable that a protocols collection such as Inflammation Protocols will represent a limited selection of the more important tools for studying inflammation. The editors have therefore focused this volume on those methods that they believe are most likely to be applicable to investigations of potential new antiinflammatory drugs in active target areas for R&D such as transcription factors, adhesion molecules, cyclooxygenase-2 (COX-2) inhibitors, nitric oxide synthases, and metalloproteinases. Some of the experimental protocols (especially the in vitro ones) described in this book are generic, in the sense that they are applicable to the study of many different inflammatory diseases, whereas others attempt to model particular human inflammatory diseases or particular aspects of inflammation.
Inflammation Protocols has been divided into three sections: (1) in vitro systems for studying aspects of inflammation, (2) in vivo models, and (3) relevant pharmacodynamic measurements for the assessment of anti-inflammatory compounds. Each section opens with one or two introductory chapters that attempt to provide an overview, or at least viewpoints, of the significance of the methods in that section of the book.

There is no doubt that we will have introduced a particular “flavor” to the book that might not be to everyone’s taste—inflammation researchers are of course notorious for having their own favorite cell or inflammatory cascade. Perhaps a second volume will eventually be needed to produce a wider coverage of inflammation protocols, but the editors must recoup their energies before contemplating that prospect. Despite this, we hope that the present volume will provide a unique and contemporary collection of methods that will be useful to both the established experimenter and newcomers to the field of inflammation.

Finally, we are very grateful indeed to the contributing authors, all of them leading researchers within their respective fields. We would also like to thank the series editor, John M. Walker, for his efficient help in reviewing the manuscripts. Most of all, we would like to express our appreciation to Lin Wells, who has somehow managed to maintain a high level of administrative organization within the project, despite the disruptive behavior of the Editors and some of the Contributors!

Paul G. Winyard
Derek A. Willoughby
Contents

Preface .. v
Contributors .. xi

PART I. IN VITRO SYSTEMS FOR STUDYING ASPECTS OF THE INFLAMMATORY RESPONSE AND TESTING ANTIINFLAMMATORY DRUGS

1. Key Stages in the Acute Inflammatory Response and Their Relevance as Therapeutic Targets: Introduction to Part 1
 Paul G. Winyard ... 3

2. IκB Kinase and NF-κB Signaling in Response to Pro-Inflammatory Cytokines
 Mireille Delhase ... 7

3. Screening for Inhibitors of Transcription Factors Using Luciferase Reporter Gene Expression in Transfected Cells
 Deborah Phippard and Anthony M. Manning ... 19

4. Adhesion Molecule Expression on Cytokine-Stimulated Human Endothelial Cells
 Susan L. Cuvelier and Kamala D. Patel ... 25

5. Phagocytosis by Inflammatory Phagocytes: Experimental Strategies for Stimulation and Quantification
 M. Rachel Morris, Sharon Dewitt, Iraj Laffafian, and Maurice B. Hallett .. 35

6. Cytosolic Ca²⁺ Measurement and Imaging in Inflammatory Cells
 Sharon Dewitt, Iraj Laffafian, M. Rachel Morris, and Maurice B. Hallett .. 47

7. Detection and Visualization of Oxidase Activity in Phagocytes
 Maurice B. Hallett, Caroline Cole, and Sharon Dewitt 61

8. Measurement of Complement Activation
 Tom Eirik Molines ... 69

 Linda Troeberg and Hideaki Nagase ... 77
10. Measurement of Aggrecanase-Generated Interglobular Domain Catabolites in the Medium and Extracts of Cartilage Explants Using Western Blot Analysis

Clare E. Hughes, Christopher B. Little, and Bruce Caterson 89

11. In Vitro Model of Human Articular Cartilage Degradation

William D. Shingleton ... 99

PART II. IN VIVO MODELS OF INFLAMMATION

12. In Vivo Models of Inflammation: *Introduction to Part 2*

Derek A. Willoughby ... 109

13. Carrageenan-Induced Paw Edema in the Rat and Mouse

Christopher J. Morris ... 115

14. Pleural Models of Inflammation: *Immune and Nonimmune*

Adrian R. Moore .. 123

15. Models of Acute Inflammation in the Ear

Miklós Gábor ... 129

16. Migration of Specific Leukocyte Subsets in Response to Cytokine or Chemokine Application In Vivo

Mauro Perretti and Stephen J. Getting .. 139

17. Inflammatory Joint Disease: *Clinical, Histological, and Molecular Parameters of Acute and Chronic Inflammation and Tissue Destruction*

Nancy L. McCartney-Francis, James Chan, and Sharon M. Wahl .. 147

18. The Assessment of Inflammation, Cartilage Matrix, and Bone Loss in Experimental Monoarticular Arthritis of the Rat

Michael P. Seed .. 161

19. Collagen-Induced Arthritis

Adrian R. Moore .. 175

20. Air-Pouch Models of Inflammation and Modifications for the Study of Granuloma-Mediated Cartilage Degradation

Paul Colville-Nash and Toby Lawrence 181

21. Quantitative Analysis of Angiogenesis Using the Murine Chronic Granulomatous Air Pouch

Chandan A. S. Alam .. 191
Contents ix

22. Models of Coronary Artery Occlusion and Reperfusion for the Discovery of Novel Antischemic and Antiinflammatory Drugs for the Heart
Nicole S. Wayman, Michelle C. McDonald, Prabal K. Chatterjee, and Christoph Thiemermann 199

23. Assessment of Anticolitic Drugs in the Trinitrobenzene Sulfonic Acid (TNBS) Rat Model of Inflammatory Bowel Disease
Brendan J. R. Whittle, Maryan Cavicchi, and Dominique Lamarque .. 209

24. An In Vivo Model of Ischemia/Reperfusion and Inflammation of the Kidneys of the Rat
Prabal K. Chatterjee and Christoph Thiemermann 223

25. In Vivo Models of Inflammation: Immune Rejection and Skin Transplantation In Vivo
Isabelle Binet and Kathryn J. Wood .. 239

26. Wound Healing: A Model of Dermal Wound Repair
Annette Tomlinson and Mark W. J. Ferguson 249

PART III. PHARMACODYNAMIC ENDPOINTS IN EXPERIMENTAL MODELS AND IN CLINICAL STUDIES IN HUMANS

27. An Iconoclastic Approach to Pharmacodynamics in Model Systems: Their Relevance to Humans: Introduction to Part 3
David R. Blake and Gordon J. Taylor .. 263

28. A Reply to “An Iconoclastic Approach to Pharmacodynamics in Model Systems: Their Relevance to Humans”
Derek A. Willoughby .. 269

29. Quantifying Inflammation In Vivo Using Radiolabeled Antibodies and Leukocytes
Diane Marshall and Dorian O. Haskard ... 273

30. Immunoperoxidase Histochemistry for the Detection of Cellular Adhesion Molecule, Cytokine, and Chemokine Expression in the Arthritic Synovium
Zoltan Szekanecz and Alisa E. Koch ... 283

31. Roles of Nitric Oxide and Superoxide in Inflammation
Daniela Salvemini, Harry Ischiropoulos, and Salvatore Cuzzocrea... 291

32. Analysis of Nitrite and Nitrate in the Study of Inflammation
Claire A. Davies, Sophie A. Rocks, Meg C. O’Shaughnessy, David Perrett, and Paul G. Winyard 305
33. In Vivo Assays for COX-2
 Chi-Chung Chan ... 321
34. Measurement of 8-epi-PGF$_2\alpha$ as a Marker of Lipid Peroxidation
 In Vivo by Immunoaffinity Extraction
 and Gas Chromatography-Mass Spectrometry
 Nitin K. Gopaul and Erik E. Ånggård 329
35. Laboratory Assessment of the Acute Phase Response:
 Using CRP as a Model
 Robert F. Ritchie and Thomas B. Ledue 343
36. Assays of Matrix Metalloproteinases (MMPs) and MMP Inhibitors:
 Bioassays and Immunoassays
 Applicable to Cell Culture Medium, Serum, and Synovial Fluid
 Jon B. Catterall and Tim E. Cawston 353
Index ... 365
Contributors

CHANDAN A. S. ALAM • The William Harvey Research Institute, London, UK
ERIK E. ÄNGGÅRD • The William Harvey Research Institute, London, UK
ISABELLE BINET • University Hospital of Geneva, Geneva, Switzerland
DAVID R. BLAKE • University of Bath, Bath, UK
BRUCE CATERSON • University of Cardiff, Cardiff, UK
JON B. CATTERALL • University of Newcastle, UK
MARIAN CAVICCHI • Hospitalier Universitaire Henri Mondor, Paris, France
TIM E. CAWSTON • University of Newcastle, Newcastle, UK
CHI-CHUNG CHAN • Merck Frosst Centre for Therapeutic Research, Quebec, Canada
JAMES CHAN • NIDCR, NIH, Bethesda, MD
PRABAL K. CHATTERJEE • The William Harvey Research Institute, London, UK
CAROLINE COLE • University of Wales College of Medicine, Cardiff, UK
PAUL COLVILLE-NASH • The William Harvey Research Institute, London, UK
SUSAN L. CUVELIER • University of Calgary, Calgary, Alberta, Canada
SALVATORE CUZZOCREA • University of Messina, Italy
CLAIRE A. DAVIES • The William Harvey Research Institute, London, UK
MIREILLE DELHASE • University of California at San Diego, La Jolla, CA
SHARON DEWITT • University of Wales College of Medicine, Cardiff, UK
MARK W. J. FERGUSON • University of Manchester, Manchester, UK
MIKLÓS GÁBOR • University of Szeged, Szeged, Hungary
STEPHEN J. GETTING • The William Harvey Research Institute, London, UK
NITIN K. GOPAUL • The William Harvey Research Institute, London, UK
MAURICE B. HALLETT • University of Wales College of Medicine, Cardiff, UK
DORIAN O. HASKARD • Imperial College School of Medicine, London, UK
CLARE E. HUGHES • University of Cardiff, Cardiff, UK
HARRY ISCHIROPOULOS • University of Pennsylvania, Philadelphia, PA
ALISA E. KOCH • Northwestern University Medical School and Department of Veterans Affairs, Chicago, IL
IRAI LAFFAFIAN • University of Wales College of Medicine, Cardiff, UK
DOMINIQUE LAMARQUE • Hospitalier Universitaire Henri Mondor, Paris, France
TOBY LAWRENCE • The William Harvey Research Institute, London, UK
THOMAS B. LEDUE • Foundation for Blood Research, Scarborough, ME
Christopher B. Little • Cell and Matrix Biology Research Unit, University of Melbourne, Melbourne, Australia
Nancy L. McCartney-Francis • NIDCR, NIH, Bethesda, MD
Michelle C. McDonald • The William Harvey Research Institute, London, UK
Anthony M. Manning • Roche Pharmaceuticals, Palo Alto, CA
Diane Marshall • Celltech, Slough, UK
Tom Erik Mollnes • University of Oslo, Oslo, Norway
Adrian R. Moore • Celltech, Slough, UK
Christopher J. Morris • University of Bath, Bath, UK
M. Rachel Morris • University of Wales College of Medicine, Cardiff, UK
Hideaki Nagase • Imperial College, London, UK
Meg C. O’Shaughnessy • The William Harvey Research Institute, London, UK
Kamala D. Patel • University of Calgary, Calgary, Alberta, Canada
David Perrett • Barts and The London School of Medicine and Dentistry, London, UK
Mauro Perretti • The William Harvey Research Institute, London, UK
Deborah Phippard • Roche Pharmaceuticals, Palo Alto, CA
Robert F. Ritchie • Foundation for Blood Research, Scarborough, ME
Sophie A. Rocks • The William Harvey Research Institute, London, UK
Daniela Salvemini • Metaphore Pharmaceuticals, St. Louis, MO
Michael P. Seed • The William Harvey Research Institute, London, UK
William D. Singleton • University of Newcastle, Newcastle, UK
Zoltan Szekanecz • University of Debrecen, Debrecen, Hungary
Gordon J. Taylor • University of Bath, Bath, UK
Christoph Thiemermann • The William Harvey Research Institute, London, UK
Annette Tomlinson • University of Manchester, Manchester, UK
Linda Troeberg • Imperial College, London, UK
Sharon M. Wahl • NIDCR, NIH, Bethesda, MD
Nicole S. Wayman • The William Harvey Research Institute, London, UK
Brendan J. R. Whittle • The William Harvey Research Institute, London, UK
Derek A. Willoughby • The William Harvey Research Institute, London, UK
Paul G. Winyard • Peninsula Medical School, St. Luke’s Campus, Universities of Exeter and Plymouth, Exeter, UK
Kathryn J. Wood • University of Oxford, Oxford, UK