Meningococcal Vaccines
64. Dendritic Cell Protocols, edited by Stephen P. Robinson and Andrew J. Stagg, 2001
59. Molecular and Cellular Pathology in Prion Disease, edited by Harry F. Baker, 2001
50. Colorectal Cancer: Methods and Protocols, edited by Steven M. Powell, 2001
40. Diagnostic and Therapeutic Antibodies, edited by Andrew J. T. George and Catherine E. Urch, 2000
Meningococcal Vaccines

Methods and Protocols

Edited by

Andrew J. Pollard, MD, PhD
BC Research Institute for Children’s and Women’s Health, Vancouver, BC, Canada

and

Martin C. J. Maiden, PhD
Wellcome Trust Centre for the Epidemiology of Infectious Disease, Oxford, UK

Foreword by

E. Richard Moxon, MB, BCHir
Department of Pediatrics, Oxford University, Oxford, UK
Foreword

Since the first recognition of outbreaks of cerebrospinal or spotted fever at the end of the nineteenth and the beginning of the twentieth centuries, the menace of the meningococcus has been high on the list of public health priorities. Few if any pathogens surpass the meningococcus in the rapidity and severity with which it devastates previously healthy individuals. The challenge of understanding the biology of this fascinating microbe is immense, but few will doubt that successful control of meningococcal meningitis and septicemia will only transpire through the application of a body of extraordinary detailed information, including key minutiae of its molecular biology.

In the first of two companion volumes, *Meningococcal Vaccines*, the team of experts gathered by Andy Pollard and Martin Maiden converge to provide an impressive accumulation of molecular tools with which to lay bare the secrets of the meningococcus. The results of this ambitious and welcome volume represent an exciting and much needed resource for all of us in the field. Time and again, on reading through the carefully prepared texts, I found the contents not only enlightening and relevant to my own research program, but also a source of new ideas and approaches—with the wherewithal to move forward all there in front of me!

Despite the pernicious behavior of the meningococcus in causing devastating disease, the new developments and tools afforded by molecular microbiology and epidemiology can surely be used to turn the tide on this pathogen. No scholar or investigator of *Neisseria meningitidis* will want to be without the riches contained within this work whose pages, I predict, will rapidly show evidence of repeated use in the many laboratories and offices of those who pursue the challenges of the meningococcus.

E. Richard Moxon, MB, BChir
Meningococcal disease, which occurs chiefly as either septicemia or meningitis, represents a major health problem worldwide. In Europe, the Americas, and Australasia these syndromes, which can occur by themselves or in combination, are principally diseases of early childhood and adolescence, whereas in Africa and Asia, especially China, large-scale epidemic or pandemic outbreaks can involve the whole community. In many industrialized countries there are few childhood diseases that parents fear more than “meningitis,” the term commonly used to refer to meningococcal disease.

There are a number of good reasons for this fear. Meningococcal disease is sporadic, unpredictable, and difficult to diagnose. The disease progresses in a matter of hours from apparently trivial symptoms to a life-threatening medical emergency. Even in the presence of treatment, a positive outcome is uncertain and, frequently, victims are left with severe disabling sequelae ranging from brain damage to limb loss. Finally, the apparently most rational approach to controlling meningococcal disease, childhood vaccination, is hindered by the lack of a suitable comprehensive vaccine, a fact that can leave public health officials feeling helpless in the face of meningococcal disease outbreaks.

Many of these factors are a consequence of the natural history of Neisseria meningitidis, the causative agent in meningococcal disease. Perhaps the most important consideration in this regard is paradoxical for one of the most feared pathogens: the meningococcus is a normally harmless member of the commensal flora of adult humans. Asymptomatic colonization of the nasopharynx is very common, averaging at about 10% of the population in many countries, peaking at higher levels, 30–40%, in some age groups. Probably as a consequence of this ubiquity, meningococcal populations contain bewildering antigenic and genetic diversity. There are thousands of distinct meningococcal variants described to date and each of these has a sophisticated mechanism for varying its surface coat in response to immune attack. In summary, this bacterium is very well adapted indeed to living with the human immune system. This adaptation is the principal reason for the difficulties in vaccine development.

Safe, effective vaccines against meningococcal disease have been available since the late 1960s. These target the polysaccharide coat of the meningococcus, which is essential for the organism’s survival in the bloodstream. From the dozen or so such coats available to the meningococcus, only five, those which define serogroups A, B, C, Y, and W-135, are associated with disease. Unfortu-
nately, vaccines that include unmodified polysaccharides are poorly immunogenic, eliciting only a temporary immune response in adults and none at all in infants. Serogroup B polysaccharide is problematic because its especially poor immunogenicity may result from immunological identity to human polysaccharides, raising concern about the safety of any vaccine based on this molecule. In addition to these polysaccharides, many research and development programs have targeted the protein components of the meningococcal coat but, as yet, despite some promising reports, none of these has resulted in a wholly satisfactory vaccine.

However, at the beginning of the 21st century, nearly 120 years after the first isolation of the meningococcus and its association with human disease in 1887, there is optimism that solutions to meningococcal disease may be on the horizon, even if comprehensive solutions remain elusive in the short or even medium term. Polysaccharide–protein conjugate vaccines, which will provide infants with life time immunity against meningococci that express the serogroup A, C, Y, and W-135 antigens, are likely to be available soon. The completion of the whole genome sequences of two meningococci and the start of the post-genomic age will provide a host of novel data and approaches to research on the development of new meningococcal vaccines. Molecular methods, combined with phylogenetic and theoretical approaches, promise accurate molecular and epidemiological descriptions of those meningococci responsible for disease, adding further knowledge to the arsenal that can be brought to bear on this difficult problem.

Meningococcal Vaccines is designed to provide a comprehensive discussion of current molecular and cellular methods relevant to meningococcal vaccine development and evaluation. The first two chapters provide the context for the book, by reviewing vaccination strategies and describing the mechanisms of immunity that are relevant to natural and vaccine-induced protection against disease. The succeeding chapters deal in detail with the many approaches available for vaccine design and the assessment of immune responses to vaccine candidates and novel vaccine formulations. The book concludes with a discussion of the implementation of a new meningococcal vaccine, based on recent experience in the United Kingdom. A companion text, *Meningococcal Disease*, is available from Humana Press; this includes overview chapters and detailed methods in the areas of diagnostic microbiology, bacterial characterization, epidemiology, host–pathogen interactions, and clinical studies.

Finally, some words of thanks to the many people who have made this book possible: the series editor, John Walker, and the staff of Humana Press for commissioning this book and seeing it through to press; the chapter authors for
their hard and always enthusiastic work in response to (frequently unreasonable) goading by the editors; our immediate colleagues who, over the years, have generously shared their knowledge, ideas, and expertise with us; and last, but by no means least, the legion of physicians and scientists who have labored in the fight against meningococcal disease since its first definitive description in 1805.

Andrew J. Pollard, md, phd
Martin C. J. Maiden, phd
Contents

Foreword ... v
Preface ... viii
Contributors .. xv

1 Meningococcal Vaccines and Vaccine Developments
 Ian M. Feavers .. 1

2 Immune Response and Host–Pathogen Interactions
 Andrew J. Pollard and David Goldblatt ... 23

3 Purification of Capsular Polysaccharide
 Qingling Yang and Harold Jennings .. 41

4 Protein–Polysaccharide Conjugation
 Zhongwu Guo and Harold Jennings .. 49

5 N-Propionylation
 Zhongwu Guo and Harold Jennings .. 55

6 Outer Membrane Protein Purification
 Carmen Arigita, Wim Jiskoot, Matthijs R. Graaf, and Gideon F. A. Kersten ... 61

7 Outer Membrane Protein Vesicle Vaccines
 for Meningococcal Disease
 Carl E. Frasch, Loek van Alphen, Johan Holst, Jan T. Poolman, and Einar Rosenqvist ... 81

8 Methods for Manipulation of Transferrin-Binding Proteins
 Leanne M. DeWinter and Anthony B. Schryvers 109

9 Methods for the Preparation and Crystallization of Fab Fragments
 in Complex with Peptide Antigens Derived
 from *N. meningitidis* Outer Membrane Proteins
 Richard F. Collins and Jeremy P. Derrick ... 121

10 Application of Optical Biosensor Techniques to the Characterization
 of PorA-Antibody Binding Kinetics
 Janet Suker and Bambos M. Charalambous 129
11 Construction of porA Mutants
Peter van der Ley and Loek van Alphen ... 145

12 Construction of LPS Mutants
Peter van der Ley and Liana Steeghs ... 155

13 Recombinant Proteins in Vaccine Development
Myron Christodoulides, Keith A. Jolley, and John E. Heckels 167

14 Identification of Peptides that Mimic N. meningitidis LOS Epitopes
Via the Use of Combinatorial Phage-Display Libraries
Paul J. Brett, Ian M. Feavers, and Bambos M. Charalambous 181

15 Testing Meningococcal Vaccines for Mitogenicity
and Superantigenicity
Alexei A. Delvig, John H. Robinson, and Lee Wetzler 199

16 Early Experiences with Nasal Vaccines
against Meningococcal Disease
Johan Holst and Bjørn Haneberg .. 223

17 Animal Models for Meningococcal Disease
Andrew R. Gorringe, Karen M. Reddin, Pierre Voet, and Jan T. Poolman ... 241

18 Determination of Antibody Responses to Meningococcal Antigens
by ELISA
Einar Rosenqvist, Helena Käyhty, and Andrew J. Pollard 255

19 Immunoblot Analysis of Sera from Patients and Vaccinees
Elisabeth Wedege .. 275

20 Serogroup B and C Serum Bactericidal Assays
Ray Borrow and George M. Carlone .. 289

21 A Modified ELISA for Measurement of High-Avidity IgG Antibodies
to Meningococcal Serogroup C Polysaccharide that Correlate
with Bactericidal Titers
Dan M. Granoff and John J. Donnelly ... 305

22 Whole-Blood Model
Catherine A. Ison ... 317

23 Antibody-Induced Opsonophagocytosis of Serogroup B
Meningococci Measured by Flow Cytometry
Terje E. Michaelsen and Audun Aase ... 331

24 T-Cell Responses Against Meningococcal Antigens
Lisbeth Meyer Næss, Fredrik Oftung, Audun Aase, Terje E. Michaelsen and Andrew J. Pollard 339
Contents

25 CD4 T-Cell Epitope Mapping
 Alexei A. Delvig and John H. Robinson .. 349

26 Epitope Mapping
 John E. Heckels and Myron Christodoulides 361

27 Meningococcal Vaccine Trials
 Paddy Farrington and Elizabeth Miller ... 371

28 The Introduction of Group C Conjugate Meningococcal Vaccine into the UK
 David M. Salisbury ... 395

Index .. 403
Contributors

AUDUN AASE • Department of Vaccinology, National Institute of Public Health, Oslo, Norway
LOEK VAN ALPHEN • Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
CARMEN ARIGITA • Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
RAY BORROW • Manchester Public Health Laboratory, Withington Hospital, Manchester, UK
PAUL J. BRETT • Division of Bacteriology, National Institute for Biological Standards and Control, Hertfordshire, UK
GEORGE M. CARLONE • Respiratory Diseases Immunology Section, National Center for Infectious Diseases, Atlanta, GA
BAMBOS M. CHARALAMBOUS • Department of Medical Microbiology, Royal Free & University College Medical School, London, UK
MYRON CHRISTODOULIDES • Molecular Microbiology and Infection Group, School of Medicine, University of Southampton, Southampton, UK
RICHARD F. COLLINS • Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, UK
ALEXEI A. DELVIG • Department of Microbiology and Immunology, Newcastle University, Newcastle, UK
JEREMY P. DERRICK • Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, UK
LEANNE M. DE WINTER • Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB, Canada
JOHN J. DONNELLY • Vaccines Research and Development, Chiron Corporation, Emeryville, CA
PADDY FARRINGTON • Department of Statistics, The Open University, Milton Keynes, UK
IAN M. FEAVERS • Division of Bacteriology, National Institute of Biological Standards & Control, Hertfordshire, UK
CARL E. FRASCH • Division of Bacterial Products, Center for Biologics Evaluation and Research, Rockville, MD
DAVID GOLDBLATT • Immunobiology Unit, Institute of Child Health, London, UK
Andrew R. Gorringe • Center for Applied Microbiology and Research, Salisbury, UK
Mathijs R. Graaf • Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
Dan M. Granoff • Children's Hospital Oakland Research Institute, Oakland, CA
Zhongwu Guo • Institute for Biological Science, National Research Council of Canada, Ottawa, ON, Canada
Bjørn Haneberg • Department of Vaccinology, National Institute of Public Health, Oslo, Norway
John E. Heckels • Molecular Microbiology and Infection Group, School of Medicine, University of Southampton, Southampton, UK
Johan Holst • Department of Vaccinology, National Institute of Public Health, Oslo, Norway
Catherine A. Ison • Department of Infectious Diseases & Microbiology, Imperial College School of Medicine, London, UK
Harold Jennings • Institute for Biological Science, National Research Council of Canada, Ottawa, ON, Canada
Wim Jiskoot • Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
Keith A. Jolley • Department of Zoology, University of Oxford, Oxford, UK
Helena Käyhty • Department of Vaccines, National Public Health Institute, Helsinki, Finland
Peter van der Ley • Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
Martin C.J. Maiden • Department of Zoology, University of Oxford, Oxford, UK
Terje E. Michaelsen • Department of Vaccinology, National Institute of Public Health, Oslo, Norway
Elizabeth Miller • Immunization Division, PHLS Communicable Disease Surveillance Center, London, UK
Lisbeth Meyer Næss • Department of Vaccinology, National Institute of Public Health, Oslo, Norway
E. Richard Moxon • Molecular Infectious Diseases Group, Oxford University Department of Pediatrics, Oxford, UK
Fredrik Ofung • Department of Vaccinology, National Institute of Public Health, Oslo, Norway
ANDREW J. POLLARD • BC Research Institute for Children's & Women's Health, Vancouver, BC, Canada

JAN T. POOLMAN • Bacterial Vaccine R&D Program, SmithKline Beecham Biologicals, Rixensart, Belgium

KAREN M. REDDIN • Center for Applied Microbiology and Research, Salisbury, UK

JOHN H. ROBINSON • Department of Microbiology and Immunology, Newcastle University, Newcastle, UK

EINAR ROSENQVIST • Department of Vaccinology, National Institute of Public Health, Oslo, Norway

DAVID M. SALISBURY • Department of Health, London, UK

ANTHONY B. SCHRYVERS • Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB, Canada

LIANA STEEGHS • Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands

JANET SUKER • Division of Bacteriology, National Institute for Biological Standards & Control, Hertfordshire, UK

PIERRE VOET • Bacterial Immunology, SmithKline Beecham Biologicals, Rixensart, Belgium

ELISABETH WEDEGE • Department of Vaccinology, National Institute of Public Health, Oslo, Norway

LEE WETZLER • Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA

QINGLING YANG • Institute for Biological Science, National Research Council of Canada, Ottawa, ON, Canada