Angiogenesis Protocols
50. Colorectal Cancer: Methods and Protocols, edited by Steven M. Powell, 2001
40. Diagnostic and Therapeutic Antibodies, edited by Andrew J. T. George and Catherine E. Urch, 2000
Angiogenesis Protocols

Edited by

J. Clifford Murray

University of Nottingham and City Hospital
Nottingham, UK

Humana Press Totowa, New Jersey
Preface

In the last few years, we have been deluged with information on angiogenesis. Scientists and the public at large are exposed daily to this “new” science, not just in specialist journals and texts, but in the tabloid press, where popular articles refer to angiogenic therapies as magic bullets and miracle cures for cancer, arthritis, retinopathies, heart disease, and circulatory problems. Is there no ill this approach will not cure? The fact that so much time, effort, and resource have been and continue to be dedicated to this new science is clear testament to its importance. Yet many fundamental aspects of angiogenesis remain poorly understood, in particular cues that activate the process. This fact has to some extent been masked behind a surfeit of fine detail; we can’t see the wood for the trees. Most studies of angiogenesis identify single links in a long chain of events. Furthermore, each study is itself hampered by the limitations of the biological end-point chosen. For instance, though endothelial proliferation may well be necessary for angiogenesis, it is not sufficient. Therefore, measuring endothelial proliferation in response to a novel growth factor, and on the basis of this observation, stating that the factor is “angiogenic,” is unsound logic. It is important that researchers in this field, and perhaps more importantly those experimenting at its periphery, recognize the limitations of their chosen biological end-points.

The appearance of Angiogenesis Protocols, which brings together many currently used assays of angiogenesis, is therefore timely. We believe this work represents a new and important resource for scientists, which will prove valuable not only to those already involved in, and familiar with, the complex field of angiogenesis, but also to those for whom this is new territory. Some of those individuals may be a little intimidated at the prospect of setting up “meaningful” assays. This text should help to allay those fears, providing easy access to a variety of angiogenesis assays likely to suit laboratories with differing technical expertise and material and, most important, financial resources. We have intentionally included a range of in-vitro assays where low cost, ease-of-use, and reproducibility are paramount. However, we have also recognized the need for clearly documented access to “cutting-edge” in-vivo models, such as the dorsal window chamber, that demand high levels of surgical skill as well as relatively expensive, custom-made equipment.

We hope you find Angiogenesis Protocols instructive and useful.

J. Clifford Murray
Contents

Preface ... v
Contributors ... ix

I SPECIAL REVIEW ARTICLE

1 Therapeutic Inhibition of Angiogenesis
 Hua-Tang Zhang and Roy Bicknell ... 3

II ANGIOGENESIS PROTOCOLS IN VIVO

2 Microscopic Assessment of Angiogenesis in Tumors
 Stephen B. Fox .. 29

3 In Vivo Matrigel Migration and Angiogenesis Assays
 Katherine M. Malinda ... 47

4 Alginate Microbead Release Assay of Angiogenesis
 Clifford Y. Ko, Vivek Dixit, William W. Shaw, and Gary Gitnick 53

5 Disc Angiogenesis Assay
 Anthony C. Allison and Luis-F. Fajardo .. 59

6 Sponge Implant Model of Angiogenesis
 Silvia P. Andrade .. 77

7 Hollow Fiber Assay for Tumor Angiogenesis
 Roger M. Phillips and Michael C. Bibby .. 87

8 Dorsal Skinfold Chamber Preparation in Mice:
 Studying Angiogenesis by Intravital Microscopy
 Axel Sckell and Michael Leunig ... 95

9 Angiogenesis Assays Using Chick Chorioallantoic Membrane
 David C. West, W. Douglas Thompson, Paula G. Sells, and Mike F. Burbridge ... 107

10 Corneal Assay for Angiogenesis
 Marina Ziche .. 131
III ANGIOGENESIS PROTOCOLS IN VITRO

11 Collagen Gel Assay for Angiogenesis:
 Induction of Endothelial Cell Sprouting

 Ana M. Schor, Ian Ellis, and Seth L. Schor 145

12 Chemotaxis and Chemokinesis in 3D Macromolecular Matrices:
 Relevance to Angiogenesis

 Ana M. Schor, Ian Ellis, and Seth L. Schor 163

13 Rat Aortic Ring: 3D Model of Angiogenesis In Vitro
 Mike F. Burbridge and David C. West .. 185

14 In Vitro Matrigel Angiogenesis Assays
 M. Lourdes Ponce .. 205

IV ASSOCIATED TECHNIQUES

15 Microvessel Endothelial Cells from Human Adipose Tissues:
 Isolation, Identification, and Culture

 Peter W. Hewett .. 213

16 Transfection and Transduction of Primary Human Endothelial Cells
 Stewart G. Martin ... 227

17 Vascular Smooth Muscle Cells:
 Isolation, Culture, and Characterization

 Richard C. M. Siow and Jeremy D. Pearson 237

18 Bovine Retinal Microvascular Pericytes: Isolation, Propagation, and
 Identification

 Ramesh C. Nayak and Ira M. Herman .. 247

Index .. 265
Contributors

ANTHONY C. ALLISON • SurroMed Inc, Palo Alto, CA
SILVIA P. ANDRADE • Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
ROY BICKNELL • Molecular Angiogenesis Laboratory, Imperial Cancer Research Fund; Institute of Molecular Medicine, University of Oxford; John Radcliffe Hospital, Oxford, UK
MICHAEL C. BIBBY • Cancer Research Unit, University of Bradford, Bradford, UK
MIKE F. BURBRIDGE • Experimental Oncology Division, Institut de Recherche Servier, Suresnes, France
VIVEK DIXIT • Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA
IAN ELLIS • Oral Diseases Group, Cell and Molecular Biology Unit, The Dental School, University of Dundee, Dundee, UK
LUIS-F. FAJARDO • Stanford Medical School and Veterans Affairs Medical Center, Palo Alto, CA
STEPHEN B. FOX • Department of Anatomical Pathology, Christchurch Hospital, Christchurch, New Zealand
GARY GITNICK • Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, CA
IRA M. HERMAN • Departments of Physiology, Anatomy and Cell Biology, and Ophthalmology, Tufts University School of Medicine; Tufts Center for Vision Research, Boston, MA
PETER W. HEWETT • Laboratory of Molecular Oncology, University of Nottingham; Cancer Research Campaign, Department of Clinical Oncology, City Hospital, Nottingham, UK
CLIFFORD Y. KO • Department of Surgery, UCLA School of Medicine, Los Angeles CA
MICHAEL LEUNIG • Department of Orthopedic Surgery, Inselspital, University of Berne, Berne, Switzerland
KATHERINE M. MALINDA • Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD
STEWART G. MARTIN • Laboratory of Molecular Oncology, University of Nottingham; Cancer Research Campaign, Department of Clinical Oncology, City Hospital, Nottingham, UK

J. CLIFFORD MURRAY • Laboratory of Molecular Oncology, University of Nottingham; Cancer Research Campaign, Department of Clinical Oncology, City Hospital, Nottingham, UK

RAMESH C. NAYAK • New England Eye Center, New England Medical Center Hospitals; Department of Physiology and Department of Ophthalmology, Tufts University School of Medicine; Tufts Center for Vision Research, Boston, MA

JEREMY D. PEARSON • Centre for Cardiovascular Biology and Medicine, School of Biomedical Sciences, King’s College London, London, UK

ROGER M. PHILLIPS • Cancer Research Unit, University of Bradford, Bradford, UK

M. LOURDES PONCE • Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda MD

ANA M. SCHOR • Oral Diseases Group, Cell and Molecular Biology Unit, The Dental School, University of Dundee, Dundee, UK

SETH L. SCHOR • Oral Diseases Group, Cell and Molecular Biology Unit, The Dental School, University of Dundee, Dundee, UK

AXEL SCKELL • Department of Orthopaedic Surgery, University of Heidelberg, Heidelberg, Germany

PAULA G. SELLS • Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK

WILLIAM W. SHAW • Division of Plastic and Reconstructive Surgery, UCLA School of Medicine, Los Angeles, CA

RICHARD C. M. SIOW • Division of Cardiovascular Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK

W. DOUGLAS THOMPSON • Department of Pathology, Medical School, Aberdeen Royal Infirmary, Aberdeen, UK

DAVID C. WEST • Department of Immunology, Faculty of Medicine, University of Liverpool, Liverpool, UK

HUA-TANG ZHANG • Molecular Angiogenesis Laboratory, Imperial Cancer Research Fund; Institute of Molecular Medicine, University of Oxford; John Radcliffe Hospital, Oxford, UK

MARINA ZICHE • Institute of Pharmacological Sciences, University of Siena, Siena, Italy