Connexin Methods and Protocols
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Editor(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>Genomics Protocols</td>
<td>Michael P. Starkey and Ramnath Elaswarapu, 2001</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Calcium-Binding Protein Protocols, Volume 2: Methods and Techniques</td>
<td>Hans J. Vogel, 2001</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Calcium-Binding Protein Protocols, Volume 1: Reviews and Case Histories</td>
<td>Hans J. Vogel, 2001</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Proteoglycan Protocols</td>
<td>Renato V. Iozzo, 2001</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>DNA Arrays: Methods and Protocols</td>
<td>Jang B. Rampal, 2001</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Protein Structure, Stability, and Folding</td>
<td>Kenneth P. Murphy, 2001</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Immunoassay Methods and Protocols</td>
<td>Walter A. Hall, 2001</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>SV40 Protocols</td>
<td>Leda Raptis, 2001</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Kinesin Protocols</td>
<td>Isabelle Vernois, 2001</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Cytoskeleton Methods and Protocols</td>
<td>Ray H. Gavin, 2001</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Nucleoside Methods and Protocols</td>
<td>Catherine H. Schein, 2001</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Amino Acid Analysis Protocols</td>
<td>Catherine Cooper, Nicole Packer, and Keith Williams, 2001</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Gene Knockout Protocols</td>
<td>Martin J. Tymms and Ismail Kola, 2001</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Mycotoxin Protocols</td>
<td>Mary W. Truckssed and Albert E. Pohland, 2001</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Antigen Processing and Presentation Protocols</td>
<td>Joyce C. Solheim, 2001</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Adipose Tissue Protocols</td>
<td>Gérard Ailhaud, 2000</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Connexin Methods and Protocols</td>
<td>Roberto Brazone and Christian Giaume, 2001</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Neuropeptide Y Protocols</td>
<td>Ambikapakan Balasubramaniam, 2000</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>DNA Repair Protocols</td>
<td>Patrick Vaugan, 2000</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Matrix Metalloprotease Protocols</td>
<td>Ian M. Clark, 2001</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Complement Methods and Protocols</td>
<td>B. Paul Morgan, 2000</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>The ELISA Guidebook</td>
<td>John R. Crowther, 2000</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>DNA–Protein Interactions: Principles and Protocols (2nd ed.)</td>
<td>Tom Moss, 2001</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Affinity Chromatography: Methods and Protocols</td>
<td>Pascal Bailon, George K. Ehrlich, Wen-Jian Fang, and Wolfgang Berthold, 2000</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Mass Spectrometry of Proteins and Peptides</td>
<td>John R. Chapman, 2000</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Bacterial Toxins: Methods and Protocols</td>
<td>Otto Holst, 2000</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Calpain Methods and Protocols</td>
<td>John S. Elece, 2000</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Protein Structure Prediction: Methods and Protocols</td>
<td>David Webster, 2000</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Transforming Growth Factor-Beta Protocols</td>
<td>Philip H. Howe, 2000</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Plant Hormone Protocols</td>
<td>Gregory A. Tucker and Jeremy A. Roberts, 2000</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Chaperonin Protocols</td>
<td>Christine Schneider, 2000</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Extracellular Matrix Protocols</td>
<td>Charles Streuli and Michael Grant, 2000</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>T Cell Protocols: Development and Activation</td>
<td>Kelly P. Kearsce, 2000</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Gene Targeting Protocols</td>
<td>Eric B. Kmiec, 2000</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Transcription Factor Protocols</td>
<td>Martin J. Tymms, 1999</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Integrin Protocols</td>
<td>Anthony Howlett, 1999</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>NMDA Protocols</td>
<td>Min Li, 1999</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Molecular Methods in Developmental Biology: Xenopus and Zebrafish</td>
<td>Matthew Guille, 1999</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Adrenergic Receptor Protocols</td>
<td>Curtis A. Machida, 2000</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Glycoprotein Methods and Protocols</td>
<td>The Mucins, edited by Anthony P. Corfield, 2000</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Protein Kinase Protocols</td>
<td>Alistair D. Reith, 2001</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>In Situ Hybridization Protocols (2nd ed.)</td>
<td>Alan A. Darby, 2000</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Confocal Microscopy Methods and Protocols</td>
<td>Stephen W. Paddock, 1999</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Natural Killer Cell Protocols</td>
<td>Kerry S. Campbell and Marco Colonna, 2000</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Eicosanoid Protocols</td>
<td>Elias A. Lianos, 2000</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Chromatin Protocols</td>
<td>Peter B. Becker, 1999</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>RNA–Protein Interaction Protocols</td>
<td>Susan R. Haynes, 1999</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Protein Lipidation Protocols</td>
<td>Michael H. Gelb, 1999</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Immunocytochemical Methods and Protocols (2nd ed.)</td>
<td>Lorette C. Javois, 1999</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Calcium Signaling Protocols</td>
<td>David G. Lambert, 1999</td>
<td></td>
</tr>
</tbody>
</table>
Connexin Methods and Protocols

Edited by

Roberto Bruzzone
Institut Pasteur,
Paris, France

and

Christian Giaume
Collège de France
Paris, France
Preface

Direct cell–cell communication is a common property of multicellular organisms that is achieved through membrane channels which are organized in gap junctions. The protein subunits of these intercellular channels, the connexins, form a multigene family that has been investigated in great detail in recent years. It has now become clear that, in different tissues, connexins speak several languages that control specific cellular functions. This progress has been made possible by the availability of new molecular tools and the improvement of basic techniques for the study of membrane channels, as well as by the use of genetic approaches to study protein function in vivo. More important, connexins have gained visibility because mutations in some connexin genes have been found to be linked to human genetic disorders.

Connexin Methods and Protocols presents in detail a collection of techniques currently used to study the cellular and molecular biology of connexins and their physiological properties. The field of gap junctions and connexin research has always been characterized by a multidisciplinary approach combining morphology, biochemistry, biophysics, and cellular and molecular biology. This book provides a series of cutting-edge protocols and includes a large spectrum of practical methods that are available to investigate the function of connexin channels.

Connexin Methods and Protocols is divided into three main parts. In the first part, we have included chapters dealing with common laboratory techniques that have been specifically adapted to the study of connexins and gap junction channels. The second part presents a variety of approaches that are more closely related to functional studies of this form of cell–cell communication. Finally, in the third part, we have grouped chapters that discuss the properties of connexins in relation to their functional role. Most chapters are organized in a very schematic fashion with a step-by-step presentation of the technique to facilitate its introduction into the laboratory. Other chapters are more narrative in style, since they discuss specific theoretical aspects of connexin biology and physiology and are, therefore, not amenable to the same format. We hope that *Connexin Methods and Protocols* will set the standard for assays used to investigate connexins and demonstrate their involvement in intercellular communication. Since there is an existing “connexin link” (connexin-connection@listserv.uni-stuttgart.de) that provides a forum to disseminate
Preface

information among researchers in this field, we hope that this electronic address may be used to post comments and protocol updates.

This book is intended for doctoral students and postdocs who are starting their work in the connexin field and wish to approach a key biological question involving several techniques. It will be equally useful to group leaders whose research activity either brings them to the study of connexins and cell–cell communication or requires the timely addition of more techniques to their laboratory repertoire. For instance, the cloning of the connexin counterparts in invertebrates, the innexin family, together with the association of connexin mutations to human diseases, has now brought developmental and human geneticists into the field of intercellular communication. It is to be hoped that the new breed of connexin researchers may find this book useful at this time.

At the 1987 Gap Junction meeting held in Asilomar (USA) the scientific community agreed on a nomenclature that distinguishes connexins on the basis of species of origin and appends the molecular mass predicted by cloned DNA sequences to the family name connexin (Cx). For example, the 43 kDa protein first identified in myocardial gap junctions is termed Cx43 and connexin homologs from different organisms can be distinguished with a suitable identifying prefix. Despite its limitations, this convention is currently used by the vast majority of researchers and, therefore, has been adopted throughout this book. The connexin family has now grown well beyond the only four members that were known 12 years ago. Thus, at the 1999 meeting on connexins and gap junctions (Gwatt, Switzerland), a committee was formed to address the issue of nomenclature. The committee has now reached a consensus and has recommended that the current nomenclature be retained.

Finally, we wish to thank all the authors for their patience in dealing with our picky reviews of the manuscripts. We hope that, despite the changes and rigidity in style that we have occasionally imposed, they will be as pleased with the outcome as we have been with their excellent contributions: we are already using some of their protocols in our laboratories. We are also grateful to the series editor, John Walker, for his invitation, since our editorial work has considerably improved our practical knowledge of connexins.

Roberto Bruzzone, MD
Christian Giaume, PhD
Contents

Preface ... v
Contributors .. xi

PART I: TOOLS TO STUDY CONNEXINS

1 Investigation of Connexin Gene Expression Patterns
 by In Situ Hybridization Techniques
 Magali Théveniau-Ruissy, Sébastien Alcoléa,
 Irène Marics, Daniel Gros, Antoon F. M. Moorman,
 and Wouter H. Lamers ... 1

2 Sodium Dodecyl Sulfate-Freeze-Fracture Immunolabeling
 of Gap Junctions
 Irene Dunia, Michel Recouvreur, Pierre Nicolas,
 Nalin M. Kumar, Hans Bloemendal,
 and E. Lucio Benedetti ... 33

3 Purification of Gap Junctions
 Gina E. Sosinsky and Guy A. Perkins .. 57

4 Culturing of Mammalian Cells Expressing Recombinant
 Connexins and Two-Dimensional Crystallization
 of the Isolated Gap Junctions
 Mark Yeager and Vinzenz M. Unger ... 77

5 Connexins/Connexons: Cell-Free Expression
 Matthias M. Falk ... 91

6 Biochemical Analysis of Connexon Assembly
 Judy K. VanSlyke and Linda S. Musil ... 117

7 Expression and Imaging of Connexin-GFP Chimeras
 in Live Mammalian Cells
 Dale W. Laird, Karen Jordan, and Qing Shao 135

8 Analysis of Connexin Expression in Brain Slices
 by Single-Cell Reverse Transcriptase
 Polymerase Chain Reaction
 Laurent Venance ... 143

9 Use of Retroviruses to Express Connexins
 Jean X. Jiang .. 159
10 Spatiotemporal Depletion of Connexins Using Antisense Oligonucleotides

Colin R. Green, Lee yong Law, Jun Sheng Lin, and David L. Becker ... 175

11 Transfection and Expression of Exogenous Connexins in Mammalian Cells

Dieter Manthey and Klaus Willecke .. 187

PART II: ASSAYS FOR FUNCTION

12 Assaying the Molecular Permeability of Connexin Channels

Paolo Meda .. 201

13 Applying the Xenopus Oocyte Expression System to the Analysis of Gap Junction Proteins

I. Martha Skerrett, Mary Merritt, Lan Zhou, Hui Zhu, FengLi Cao, Joseph F. Smith, and Bruce J. Nicholson ... 225

14 Mutagenesis to Study Channel Structure

Gerhard Dahl and Arnold Pfahni ... 251

15 Dual Patch Clamp

Harold V.M. Van Rijen, Ronald Wilders, Martin B. Rook, and Habo J. Jongsma ... 269

16 Determining Ionic Permeabilities of Gap Junction Channels

Richard D. Veenstra ... 293

17 Fluorescence Recovery After Photobleaching

Jean Délèze, Bruno Delage, Olfa Hentati-Ksibi, Franck Verrecchia, and Jean Claude Hervé 313

18 Capture of Transjunctional Metabolites

Gary S. Goldberg and Paul D. Lampe .. 329

PART III: PHYSIOLOGY AND BIOLOGY OF CONNEXINS

19 The Study of Connexin Hemichannels (Connexons) in Xenopus Oocytes

E. Brady Trexler and Vytas K. Verselis ... 341

20. Exploring Hemichannel Permeability In Vitro

Andrew L. Harris and Carville G. Bevans ... 357

21 Inducing De Novo Formation of Gap Junction Channels

Feliksas F. Bukauskas .. 379
Contents

22 Recording and Analysis of Putative Direct Electrical Interactions in the Mammalian Brain
Taufik A. Valiante, Jose L. Perez Velazquez, and Peter L. Carlen .. 395

23 Intercellular Calcium Signaling and Flash Photolysis of Caged Compounds: A Sensitive Method to Evaluate Gap Junctional Coupling
Luc Leybaert and Michael J. Sanderson ... 407

24 Biochemical Analysis of Connexin Phosphorylation
Bonnie J. Warn-Cramer, Wendy E. Kurata, and Alan F. Lau ... 431

25 How to Close a Gap Junction Channel: Efficacies and Potencies of Uncoupling Agents
Renato Rozental, Miduturu Srinivas, and David C. Spray ... 447

Index ... 477
Contributors

SÉBASTIEN ALCOLÉA • Institut de Biologie du Développement de Marseille, Université de la Méditerranée, Marseille, France

DAVID L. BECKER • Department of Anatomy and Developmental Biology, University College London, London, England

E. LUCIO BENEDETTI • Institut J. Monod, Université Paris VII, Paris, France

CARVILLE G. BEVANS • Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT

HANS BLOEMENDAL • Department of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands

ROBERTO BRUZZONE • Unité de Neurovirologie et Regeneration du Systeme Nerveux, Institut Pasteur, Paris, France

FELIKSAS F. BUKAUSKAS • Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY

FENGLI CAO • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY

PETER L. CARLEN • Playfair Neuroscience Unit, Bloorview Epilepsy Programme, University of Toronto, Toronto, Canada

GERHARD DAHL • Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL

BRUNO DELAGE • Laboratoire de Physiologie Cellulaire, Université de Poitiers, Poitiers, France

JEAN DELÈZE • Laboratoire de Physiologie Cellulaire, Université de Poitiers, Poitiers, France

IRENE DUNIA • Institut J. Monod, Université Paris VII, Paris, France.

MATTHIAS M. FALK • Department of Cell Biology, The Scripps Research Institute, La Jolla, CA

CHRISTIAN GIAUME • Directeur de Recherche au CNRS, INSERM U114, Collège de France, Paris, France

GARY S. GOLDBERG • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY

COLIN R. GREEN • Department of Anatomy with Radiology, University of Auckland, School of Medicine, Auckland, New Zealand

DANIEL GROS • Institut de Biologie du Développement de Marseille, Université de la Méditerranée, Marseille, France
Andrew L. Harris • Department of Pharmacology and Physiology, New Jersey Medical School, Newark, NJ
Olfa Hentati-Ksibi • Laboratoire de Physiologie Cellulaire, Université de Poitiers, Poitiers, France
Jean-Claude Hervé • Laboratoire de Physiologie Cellulaire, Université de Poitiers, Poitiers, France
Jean X. Jiang • Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX
Habo J. Jongsma • Department of Medical Physiology, University Medical Center, Utrecht, The Netherlands
Karen Jordan • Department of Anatomy and Cell Biology, University of Western Ontario, Ontario, Canada
Nalin M. Kumar • Department of Cell Biology, The Scripps Research Institute, La Jolla, CA
Wendy E. Kurata • Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Dale W. Laird • Department of Anatomy and Cell Biology, University of Western Ontario, Ontario, Canada
Wouter H. Lamers • Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
Paul D. Lampe • Fred Hutchinson Cancer Research Center, Seattle, WA
Alan F. Lau • Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Lee Yong Law • Department of Anatomy with Radiology, University of Auckland, School of Medicine, Auckland, New Zealand
Luc Leybaert • Department of Physiology and Pathophysiology, University of Ghent, Ghent, Belgium
Jun Sheng Lin • Department of Anatomy with Radiology, University of Auckland, School of Medicine, Auckland, New Zealand
Dieter Manthey • Institut für Genetik, Universität Bonn, Bonn, Germany
Irène Marics • Institut de Biologie du Développement de Marseille, Université de la Méditerranée, Marseille, France
Paolo Meda • Département de Morphologie, Centre Médical Universitaire, Genève, Switzerland
Mary Merritt • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY
Antoon F. M. Moorman • Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
Linda S. Musil • Vollum Institute, Oregon Health Sciences University, Portland, OR
Bruce J. Nicholson • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY
Pierre Nicolas • Institut J. Monod, Université Paris VII, Paris, France
Jose L. Perez Velázquez • Playfair Neuroscience Unit, Bloorview Epilepsy Programme, University of Toronto, Toronto, Canada
Guy A. Perkins • Department of Neurosciences, University of California, San Diego, CA
Arnold Pfahnl • Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL
Michel Recouvreur • Institut J. Monod, Université Paris VII, Paris, France
Martin B. Rook • Department of Medical Physiology, University Medical Center, Utrecht, The Netherlands
Renato Rozental • Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY and the Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
Michael J. Sanderson • Department of Physiology, University of Massachusetts Medical School, Worcester, MA
Qing Shao • Department of Anatomy and Cell Biology, University of Western Ontario, Ontario, Canada
I. Martha Skerrett • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY
Joseph F. Smith • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY
Gina E. Sosinsky • Department of Neurosciences, University of California, San Diego, CA
David C. Spray • Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
Miduturu Srinivas • Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
Magali Théveniau-Ruissy • Institut de Biologie du Développement de Marseille, Université de la Méditerranée, Marseille, France
E. Brady Trexler • Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
Vinzenz M. Unger • Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
Taufik A. Valiante • Playfair Neuroscience Unit, Bloorview Epilepsy Programme, University of Toronto, Toronto, Canada
Contributors

Harold V. M. Van Rijen • Department of Medical Physiology, University Medical Center, Utrecht, The Netherlands

Judy K. VanSlyke • Vollum Institute, Oregon Health Sciences University, Portland, OR

Richard D. Veenstra • Department of Pharmacology, SUNY Health Science Center, Syracuse, NY

Laurent Venance • INSERM U114, Collège de France, Paris, France

Franck Verrecchia • Laboratoire de Physiologie Cellulaire, Université de Poitiers, Poitiers, France

Vytas K. Verselis • Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY

Bonnie J. Warn-Cramer • Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Ronald Wilders • Department of Medical Physiology, University Medical Center, Utrecht, The Netherlands

Klaus Willecke • Institut für Genetik, Universität Bonn, Bonn, Germany

Mark Yeager • Division of Cardiovascular Diseases, Scripps Clinic and Research Foundation, La Jolla, CA

Lan Zhou • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY

Hui Zhu • Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY