Supercritical Fluid Methods and Protocols
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Editor(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Supercritical Fluid Methods and Protocols</td>
<td>John R. Williams and Anthony A. Clifford</td>
<td>2000</td>
</tr>
<tr>
<td>12</td>
<td>Environmental Monitoring of Bacteria</td>
<td>Clive Edwards</td>
<td>1999</td>
</tr>
<tr>
<td>11</td>
<td>Aqueous Two-Phase Systems</td>
<td>Rajni Hatti-Kaul</td>
<td>1999</td>
</tr>
<tr>
<td>10</td>
<td>Carbohydrate Biotechnology Protocols</td>
<td>Christopher Bucke</td>
<td>1999</td>
</tr>
<tr>
<td>9</td>
<td>Downstream Processing Methods</td>
<td>Mohamed A. Desai</td>
<td>2000</td>
</tr>
<tr>
<td>8</td>
<td>Animal Cell Biotechnology</td>
<td>Nigel Jenkins</td>
<td>1999</td>
</tr>
<tr>
<td>5</td>
<td>Biopesticides: Use and Delivery</td>
<td>Franklin R. Hall and Julius J. Menn</td>
<td>1998</td>
</tr>
<tr>
<td>4</td>
<td>Natural Products Isolation</td>
<td>Richard J. P. Cannell</td>
<td>1998</td>
</tr>
<tr>
<td>3</td>
<td>Recombinant Proteins from Plants: Production and Isolation of Clinically Useful Compounds</td>
<td>Charles Cunningham and Andrew J. R. Porter</td>
<td>1998</td>
</tr>
<tr>
<td>2</td>
<td>Bioremediation Protocols</td>
<td>David Sheehan</td>
<td>1997</td>
</tr>
<tr>
<td>1</td>
<td>Immobilization of Enzymes and Cells</td>
<td>Gordon F. Bickerstaff</td>
<td>1997</td>
</tr>
</tbody>
</table>
Supercritical Fluid Methods and Protocols

Edited by

John R. Williams
College of Science, Sultan Qaboos University, Sultanate of Oman
and

Anthony A. Clifford
School of Chemistry, Leeds, UK

Humana Press
Totowa, New Jersey
Preface

Over the last 15 years, there has been renewed interest in supercritical fluids owing to their unique properties and relatively low environmental impact. Greatest attention has been given to the extraction and separation of organic compounds. Supercritical fluids have also been successfully used for particle production, as reaction media, and for the destruction of toxic waste. Supercritical carbon dioxide has been the most widely used supercritical fluid, mainly because it is cheap, relatively nontoxic, and has convenient critical values. Supercritical fluids have also been used on analytical and preparative scales for many biological and other applications.

Many papers have been published on the use of supercritical fluids. However, few have acted as a detailed instruction manual for those wanting to use the techniques for the first time. We anticipate that this Methods in Biotechnology volume, Supercritical Fluid Methods and Protocols will satisfy the need for such a book.

Every chapter has been written by experienced workers and should, if closely followed, enable workers with some or no previous experience of supercritical fluids to conduct experiments successfully at the first attempt. The Introduction to each chapter gives the reader all the necessary background information. The Materials and Methods sections describe, in detail, the apparatus and steps needed to complete the protocol quickly, with a minimum of fuss. The Notes section, an acclaimed feature of the Methods in Biotechnology series, gives additional information not normally seen in published papers that enable the procedures to be conducted easily. Some of the chapters describe how the procedures can be modified for application to new situations. The first chapter is not a detailed procedure, but a theoretical, general introduction to the area of supercritical fluids intended to instruct novices in this branch of technology.

It is envisaged that Supercritical Fluid Methods and Protocols will be useful to both student and experienced research workers in biology and related areas. Our hope is that the experience gained when using these techniques will give these workers the confidence to explore new applications for supercritical fluids.
One can envisage a time in the future when the use of sub- and supercritical carbon dioxide and water becomes very important in laboratory work, with organic solvent use considerably reduced.

Finally, we would like to thank Professor John Walker for allowing us to edit this volume and for his cooperation during the compiling of this book. We would also like to acknowledge Professor E. D. Morgan of Keele University, UK for passing this opportunity on to us. We thank Thomas Lanigan and his colleagues at Humana for their help in seeing our book through press.

John R. Williams
Anthony A. Clifford
Contents

Preface .. v
Contributors .. xi

1 Introduction to Supercritical Fluids and Their Applications
 Anthony A. Clifford and John R. Williams .. 1

2 Supercritical Fluid Extraction of Caffeine from Instant Coffee
 John R. Dean, Ben Liu, and Edwin Ludkin .. 17

3 Supercritical Fluid Extraction of Nitrosamines from Cured Meats
 John W. Pensabene and Walter Fiddler .. 23

4 Supercritical Fluid Extraction of Melengestrol Acetate
 from Bovine Fat Tissue
 Robert J. Maxwell, Owen W. Parks, Roxanne J. Shadwell, Alan R. Lightfield, Carolyn Henry, and Brenda S. Fuerst 31

5 Supercritical Fluid Extraction of Polychlorinated Biphenyls
 from Fish Tissue
 Michael O. Gaylor and Robert C. Hale .. 41

6 Isolation of Polynuclear Aromatic Hydrocarbons from Fish Products
 by Supercritical Fluid Extraction
 Eila P. Järvenpää and Rainer Huopalahti ... 55

7 Supercritical Fluid Extraction of Mycotoxins from Feeds
 Rainer Huopalahti and Eila P. Järvenpää ... 61

8 Supercritical Fluid Extraction of Pigments from Seeds
 of Eschscholtzia californica Cham.
 Maria L. Colombo and Andrea Mossa ... 67

9 Supercritical Fluid Extraction of Flumetralin from Tobacco Samples
 Fernando M. Lanças, Mário S. Galhiane, and Sandra R. Rissato ... 75

10 Supercritical Fluid Extraction and High Performance Liquid
 Chromatography Determination of Carbendazim
 in Bee Larvae
 José L. Bernal, Juan J. Jiménez, and María T. Martín 83
11 Supercritical Fluid Extraction Coupled with Enzyme Immunoassay Analysis of Soil Herbicides
 G. Kim Stearman ... 89
12 The Supercritical Fluid Extraction of Drugs of Abuse from Human Hair
 Pascal Kintz and Christian Staub .. 95
13 Application of Direct Aqueous Supercritical Fluid Extraction for the Dynamic Recovery of Testosterone Liberated from the Enzymatic Hydrolysis of Testosterone-β-D-Glucuronide
 Edward D. Ramsey, Brian Minty, and Anthony T. Rees 105
14 Analysis of Anabolic Drugs by Direct Aqueous Supercritical Fluid Extraction Coupled On-Line with High-Performance Liquid Chromatography
 Edward D. Ramsey, Brian Minty, and Anthony T. Rees 113
15 Detection of Beta-Blockers in Urine and Serum by Solid-Phase Extraction–Supercritical Fluid Extraction and Gas Chromatography–Mass Spectrometry
 Kari Hartonen and Marja-Liisa Riekkola ... 119
16 On-Line SFE–SFC for the Analysis of Fat-Soluble Vitamins and Other Lipids from Water Matrices
 Francisco J. Señoráns and Karin E. Markides 127
17 Determination of Artemisinin in Artemisia annua L. by Off-Line Supercritical Fluid Extraction and Supercritical Fluid Chromatography Coupled to an Evaporative Light-Scattering Detector
 Marcel Kohler, Werner Haerdi, Philippe Christen, and Jean-Luc Veuthey ... 135
18 Analysis of Cannabis by Supercritical Fluid Chromatography with Ultraviolet Detection
 Michael D. Cole .. 145
19 Direct Chiral Resolution of Optical Isomers of Diltiazem Hydrochloride by Packed Column Supercritical Fluid Chromatography
 Koji Yaku, Keiichi Aoe, Noriyuki Nishimura, Tadashi Sato, and Fujio Morishita ... 149
20 Determination of Salbutamol Sulfate and Its Impurities in Pharmaceuticals by Supercritical Fluid Chromatography
 María J. del Nozal, Laura Toribio, José L. Bernal, and Maria L. Serna .. 157
21 Packed Column Supercritical Fluid Chromatographic Determination of Acetaminophen, Propyphenazone, and Caffeine in Pharmaceutical Dosage Forms

Urmila J. Dhorda, Viddesh R. Bari, and M. Sundaresan 163

22 Analysis of Shark Liver Oil by Thin-Layer and Supercritical Fluid Chromatography

Christina Borch-Jensen, Magnus Magnussen, and Jørgen Mollerup .. 169

23 Enzymatically Catalyzed Transesterifications in Supercritical Carbon Dioxide

Rolf Marr, Harald Michor, Thomas Gamse, and Helmut Schwab ... 175

24 Transesterification Reactions Catalyzed by Subtilisin Carlsberg Suspended in Supercritical Carbon Dioxide and in Supercritical Ethane

Teresa Corrêa de Sampaio and Susana Barreiros 179

25 Enzymatic Synthesis of Peptide in Water-Miscible Organic Solvent/Supercritical Carbon Dioxide

Hidetaka Noritomi .. 189

26 Micronization of a Polysaccharide by a Supercritical Antisolvent Technique

Alberto Bertucco and Paolo Pallado .. 193

27 Rapid Expansion of Supercritical Solutions Technology: Production of Fine Particles of Steroid Drugs

Paolo Alessi, Angelo Cortesi, Ireneo Kikic, and Fabio Carli 201

28 Supercritical Fluid Aerosolized Vitamin E Supplementation

Brooks M. Hybertson ... 209

29 Extraction of Biologically Active Substances from Wood

Jeffrey J. Morrell and Keith L. Levien 221

30 The Deposition of a Biocide in Wood-Based Material

Jeffrey J. Morrell and Keith L. Levien 227

31 Critical Point Drying of Biological Specimens for Scanning Electron Microscopy

Douglas Bray .. 235

32 Staining of Fingerprints on Checks and Banknotes Using Ninhydrin

Anthony A. Clifford and Ricky L. Green 245

Index ... 251
Contributors

PAOLO ALESSI • Dipartimento di Ingegneria Chimica, dell’Ambiente e delle Materie Prime, University of Trieste, Trieste, Italy
KEICHI AOE • Analytical Research Laboratory, Tanabe Seiyaku Co., Ltd., Osaka, Japan
VIDDESH R. BARI • Department of Chemistry, Ismail Yusuf College of Arts, Commerce and Science, Mumbai, India
SUSANA BARREIROS • Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
JOSÉ L. BERNAL • Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
ALBERTO BERTUCCO • Istituto di Impianti Chimici, University of Padova, Padova, Italy
CHRISTINA BORCH-JENSEN • Department of Chemical Engineering, Technical University of Denmark, Lyngby, Denmark
DOUGLAS BRAY • Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
FABIO CARLI • Vectorpharma SPA, Trieste, Italy
ANTHONY A. CLIFFORD • School of Chemistry, University of Leeds, Leeds, UK
PHILIPPE CHRISTEN • Laboratoire de Chimie Analytique Pharmaceutique, Université de Genève, Genève, Switzerland
MICHAEL D. COLE • Forensic Science Unit, University of Strathclyde, Glasgow, UK
MARIA L. COLOMBO • Institute of Pharmacological Science, University of Milan, Milan, Italy
TERESA CORRÊA DE Sampaio • Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
ANGELO CORTESI • Dipartimento di Ingegneria Chimica, dell’Ambiente e delle Materie Prime, University of Trieste, Trieste, Italy
JOHN R. DEAN • School of Applied and Molecular Sciences, University of Northumbria, Newcastle upon Tyne, UK
MARÍA J. DEL NOZAL • Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
Urmila J. Dhorda • Department of Chemistry, Ismail Yusuf College of Arts, Commerce and Science, Mumbai, India
Walter Fiddler • Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA
Brenda S. Fuerst • Food Safety Inspection Service, Midwestern Laboratory, US Department of Agriculture, St. Louis, MO
Mário S. Galhiane • Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
Thomas Gamse • Institut für Thermische Verfahrenstechnik und Umwelttechnik, Technische Universität Graz, Graz, Austria
Michael O. Gaylor • Department of Environmental Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, VA
Ricky L. Green • Express Separations Limited, Leeds, UK
Werner Haerdli • Laboratoire de Chimie Analytique Pharmaceutique, Université de Genève, Pavillon des Isotopes, Genève, Switzerland
Robert C. Hale • Department of Environmental Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, VA
Kari Hartonen • Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
Carolyn Henry • Midwestern Laboratory, Food Safety Inspection Service, US Department of Agriculture, St. Louis, MO
Rainer Huopalahti • Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
Brooks M. Hybertson • Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center, Denver, CO
Eila P. Järvenpää • Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
Juan J. Jiménez • Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
Ireneo Kikic • Dipartimento di Ingegneria Chimica, dell’Ambiente e delle Materie Prime, University of Trieste, Trieste, Italy
Pascal Kintz • Institut de Médecine Légale, Cedex, France
Marcel Kohler • Laboratoire de Chimie Analytique Pharmaceutique, Université de Genève, Pavillon des Isotopes, Genève, Switzerland
Fernando M. Lanças • Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
Keith L. Leiven • Department of Chemical Engineering, Oregon State University, Corvallis, OR
ALAN R. LIGHTFIELD • Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
BEN LIU • Department of Pharmacy, Hubei College of Traditional Chinese Medicine, People’s Republic of China
EDWIN LUDKIN • School of Applied and Molecular Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne, UK
MAGNUS MAGNUSSEN • Food and Environmental Institute, Thorshavn, Faroe Islands
KARIN E. MARKIDES • Department of Analytical Chemistry, Uppsala University, Uppsala, Sweden
ROLF MARR • Institut für Thermische Verfahrenstechnik und Umwelttechnik, Technische Universität Graz, Graz, Austria
MARÍA T. MARTÍN • Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
ROBERT J. MAXWELL • Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
HARALD MICHOR • Institut für Thermische Verfahrenstechnik und Umwelttechnik, Technische Universität Graz, Graz, Austria
BRIAN MINTY • School of Applied Sciences, University of Glamorgan, Glamorgan, UK
JÖRGEN MOLLERUP • Department of Chemical Engineering, Technical University of Denmark, Lyngby, Denmark
FUJIO MORISHITA • Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
JEFFREY J. MORRELL • Department of Forest Products, Oregon State University, Corvallis, OR
ANDREA MOSSA • Institute of Pharmacological Science, University of Milan, Milan, Italy
NORIYUKI NISHIMURA • Analytical Research Laboratory, Tanabe Seiyaku Co., Ltd., Osaka, Japan
HIDETAKA NORITOMI • Department of Applied Chemistry, Graduate School of Engineering, Tokyo Metropolitan University, Tokyo, Japan
PAOLO PALLADO • Exenia Group srl., Albignasego, Italy
JOHN W. PENSABENE • Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
OWEN W. PARKS • Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
EDWARD D. RAMSEY • School of Applied Sciences, University of Glamorgan, Glamorgan, UK
ANTHONY T. REES • Nycomed Amersham, Cardiff Laboratories, Cardiff, UK
Marja-Liisa Riekkola • Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
Sandra R. Rissato • Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
Tadashi Sato • Analytical Research Laboratory, Tanabe Seiyaku Co., Ltd., Osaka, Japan
Helmut Schwab • Institut für Biotechnologie, Technische Universität Graz, Graz, Austria
Francisco J. Señoráns • Ciencia y Tecnologia de Alimentos, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
Maria L. Serna • Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
Roxanne J. Shadwell • Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA
Christian Staub • Institut de Médecine Légale, Genève, Switzerland
G. Kim Stearman • Center for the Management, Utilization and Protection of Water Resources, Tennessee Technological University, Cookeville, TN
M. Sundaresan • Department of Chemistry, C.B. Patel Research Centre for Chemistry and Biological Sciences, Mumbai, India
Laura Toribio • Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Valladolid, Spain
Jean-Luc Veuthey • Laboratoire de Chimie Analytique Pharmaceutique, Université de Genève, Pavillon des Isotopes, Genève, Switzerland
John R. Williams • Department of Chemistry, College of Science, Sultan Qaboos University, Sultanate of Oman
Koji Yaku • Analytical Research Laboratory, Tanabe Seiyaku Co., Ltd., Osaka, Japan