Aqueous Two-Phase Systems
 5. Biopesticides: Use and Delivery, edited by Franklin R. Hall and Julius J. Menn, 1998
 1. Immobilization of Enzymes and Cells, edited by Gordon F. Bickerstaff, 1997
Preface

A mixture of two polymers, or one polymer and a salt, in an aqueous medium separates into two phases: this phenomenon is useful in biotechnology for product separations. Separation of biological molecules and particles in these aqueous two-phase systems (ATPS) was initiated over 40 years ago by P.-Å. Albertsson, and later proved to be of immense utility in biochemical and cell biological research. A boost in the application of ATPS was seen when problems of separations in biotechnology processes were encountered. Its simplicity, biocompatibility, and amenability to easy scaleup operations make the use of ATPS very attractive for large-scale bioseparations. Despite the advantages ATPS enjoys over other separation techniques, the application of two-phase systems has for a long time been confined to selected laboratories. Recent years have, however, shown a trend in which increasing numbers of researchers employ two-phase partitioning techniques in both basic and applied research.

Aqueous Two-Phase Systems: Methods and Protocols is a collection of cutting-edge methods intended to provide practical guidelines for those who are new to the area of separations in two-phase systems. Besides the established methods, many newly developed techniques with potential applications in biotechnology are also described. As an introduction, the first chapter provides a brief general overview of ATPS and its applications. The remainder of the volume is broadly divided into five sections. The first two sections are basic, describing methods for ATPS preparation and characterization, and the various partitioning techniques that may be employed. Multistage partitioning increases the resolving power of ATPS, allowing separation of materials differing only very slightly in physicochemical properties.

Partitioning applied to soluble molecules and particulates has been dealt with in the third section, where examples of different categories of materials are presented. Once the reader is acquainted with the methodology and the "tricks" to be used to obtain the desired partitioning, the separation technique may then be applied to any material of interest. Separation of particulates—including whole cells, membranes, and organelles—has been a major achievement of ATPS, one that greatly facilitates studies on cells and their properties. Purification of viruses is another successful example. With regard to soluble
molecules, partitioning has been most commonly applied to the separation of macromolecules, since their distribution between the two phases is influenced to a greater extent by a system variation than is the distribution of small molecules. This has enabled the application of ATPS even as an analytical tool to determine, e.g., the concentration and isoelectric point of proteins, molecular interactions, conformational changes of biomolecules, and so on. Lately, applications of ATPS in the separation of small molecules have also emerged. Molecules with defined properties are proving useful for understanding the interactions involved during partitioning, which would be helpful in the selection of appropriate phase systems for specific separation problems.

The main application of ATPS in biotechnology has been the isolation and purification of proteins; hence a significant part of *Aqueous Two-Phase Systems: Methods and Protocols*, compiled as Part IV, is devoted to this subject, including a glimpse of the large-scale handling of the two-phase separations. The real success of this technique has been in the extraction of proteins directly from crude feedstocks, where it has provided clarification, concentration, and even some purification in a single step. The extraction of proteins by spontaneous partitioning alone necessitates optimization of various parameters. The need to improve the selectivity of extractions has also led to exploitation of charge–charge, hydrophobic, and affinity interactions, in which specific binding groups are located in the phase used as the extractant. Integration of ATPS with other separation techniques provides scope for facilitating such selective extractions. Limiting the material costs for large-scale purposes still remains a challenge. The recycling of phase components is thus essential, which is easily done for some phase chemicals, but not for others. New phase materials with easy recyclability are being studied.

There has been interest in using aqueous two-phase systems in another area of biotechnology, i.e., *in situ* product recovery during biocatalytic processes. This concept has been presented in the last section of the volume. Analogous to aqueous systems are the newly developed polymer–polymer systems in organic solvents, which are useful with synthetic reactions.

My hope is that *Aqueous Two-Phase Systems: Methods and Protocols* will not only prove helpful in your research, but will also lead to discovery of the surprises and pleasures of aqueous two-phase systems separations. I wish to thank all the contributors to this volume for sharing their knowledge and practical experience with the reader. Special thanks are due to Associate Professor Göte Johansson, Emeritus Professor P.-Å. Albertsson, and Professor Bo Mattiasson for their useful suggestions.

Rajni Hatti-Kaul
Contents

Preface .. v
List of Contributors .. xi

1 Aqueous Two-Phase Systems: A General Overview
 Rajni Hatti-Kaul .. 1

PART I. PREPARATION AND CHARACTERIZATION OF AQUEOUS TWO-PHASE SYSTEMS

2 The Phase Diagram
 Anita Kaul .. 11

3 Preparation of Aqueous Two-Phase Systems
 Daniel Forciniti .. 23

4 Measurement of Some Physical Properties of Aqueous Two-Phase Systems
 Donald E. Brooks and Raymond Norris-Jones .. 35

PART II. PARTITIONING TECHNIQUES

5 Single-Step Partitioning in Aqueous Two-Phase Systems
 Telma Teixeira Franco and Rajni Hatti-Kaul .. 47

6 Partition by Countercurrent Distribution (CCD)
 Hans-Erik Åkerlund ... 55

7 Liquid–Liquid Partition Chromatography (LLPC)
 Ulla-Britt Hansson and Christer Wingren ... 65

PART III. PARTITIONING OF SOLUBLE MOLECULES AND PARTICULATES

8 Metal Ion Separations in Aqueous Biphasic Systems and with ABEC™ Resins
 Jonathan G. Huddleston, Scott T. Griffin, Jianhua Zhang, Heather D. Willauer, and Robin D. Rogers .. 77

9 Partition of Amino Acids and Peptides in Aqueous Two-Phase Systems
 I-Ming Chu and Wen-Yi Chen .. 95

10 Predicting Partition Coefficients of Small Solutes Based on Hydrophobicity
 Mark A. Eiteman ... 107
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Eukaryotic Cell Partition: Experimental Considerations</td>
<td>James M. Van Alstine</td>
<td>119</td>
</tr>
<tr>
<td>12</td>
<td>Concentration and Purification of Viruses</td>
<td>Lena Hammar</td>
<td>143</td>
</tr>
<tr>
<td>13</td>
<td>Isolation of Plant Plasma Membranes and Production of Inside-Out Vesicles</td>
<td>Christer Larsson and Susanne Widell</td>
<td>159</td>
</tr>
<tr>
<td>14</td>
<td>Isolation of Inside-Out Thylakoid Vesicles</td>
<td>Hans-Erik Åkerlund</td>
<td>167</td>
</tr>
<tr>
<td>15</td>
<td>Two-Phase Partitioning as a Method for Isolation of Tight Plasma Membrane Vesicles from Saccharomyces cerevisiae and from Chlamydomonas reinhardtii</td>
<td>Birgitta Norling</td>
<td>177</td>
</tr>
<tr>
<td>16</td>
<td>Purification of Cyanobacterial Thylakoid, Plasma, and Outer Membranes by Two-Phase Partitioning</td>
<td>Birgitta Norling</td>
<td>185</td>
</tr>
<tr>
<td>17</td>
<td>Purification of Plasma Membranes by Affinity Partitioning</td>
<td>Bengt Jergil and Lars Ekblad</td>
<td>193</td>
</tr>
<tr>
<td>18</td>
<td>Studying the Influence of Salts on Partitioning of Proteins: Isoelectric Point Determination</td>
<td>Daniel Forciniti</td>
<td>201</td>
</tr>
<tr>
<td>20</td>
<td>Detection and Analysis of Interactions by Two-Phase Partition</td>
<td>Lars Backman</td>
<td>219</td>
</tr>
<tr>
<td>21</td>
<td>Cryopartitioning in Two-Phase Systems Containing Organic Solvents</td>
<td>Göte Johansson</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>PART IV. ISOLATION AND PURIFICATION OF PROTEINS BY TWO-PHASE EXTRACTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Optimization of Extractions in Aqueous Two-Phase Systems</td>
<td>Ulrich Menge</td>
<td>235</td>
</tr>
<tr>
<td>23</td>
<td>Two-Phase Extraction of Proteins from Cell Debris</td>
<td>Kristina Köhler Van Alstine and Andres Veide</td>
<td>251</td>
</tr>
<tr>
<td>24</td>
<td>Aqueous Two-Phase Extraction of Proteins from Animal Tissue</td>
<td>Michael J. Boland</td>
<td>259</td>
</tr>
<tr>
<td>25</td>
<td>Chaotropic Aqueous Two-Phase Systems: Preparation and Uses</td>
<td>Daniel Forciniti</td>
<td>271</td>
</tr>
<tr>
<td>26</td>
<td>Temperature-Induced Phase Partitioning for Protein Purification</td>
<td>Anita Kaul, Josefine Persson, and Folke Tjerneld</td>
<td>281</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Extraction of Amphiphilic Proteins Using Detergent-Based Aqueous Two-Phase Systems</td>
<td>Torsten Minuth</td>
<td>291</td>
</tr>
<tr>
<td>28</td>
<td>Use of Charged PEG and Dextran Derivatives for Biomolecule Partitioning</td>
<td>Göte Johansson</td>
<td>303</td>
</tr>
<tr>
<td>29</td>
<td>Affinity Partitioning Using Poly(ethylene glycol) with Covalently Coupled Hydrophobic Groups</td>
<td>Vithaldas P. Shanbhag and Poul Erik H. Jensen</td>
<td>315</td>
</tr>
<tr>
<td>30</td>
<td>Dye-Ligand Affinity Partitioning of Proteins</td>
<td>Gerhard Kopperschläger and Jürgen Kirchberger</td>
<td>329</td>
</tr>
<tr>
<td>31</td>
<td>Metal Affinity Protein Partitioning</td>
<td>Roberto Z. Guzmán and Javier E. García</td>
<td>347</td>
</tr>
<tr>
<td>32</td>
<td>Recovery of Proteins and Phase Components</td>
<td>Göte Johansson</td>
<td>357</td>
</tr>
<tr>
<td>33</td>
<td>Combination of Extraction with Adsorption for Protein Purification</td>
<td>Gabriel Raya-Tonetti and Nora I. Perotti</td>
<td>365</td>
</tr>
<tr>
<td>34</td>
<td>Integration of Extraction with Affinity Precipitation</td>
<td>Masamichi Kamihira, Rajni Hatti-Kaul, and Bo Mattiasson</td>
<td>373</td>
</tr>
<tr>
<td>35</td>
<td>Affinity Partitioning Using Magnetic Two-Phase Systems</td>
<td>Masamichi Kamihira</td>
<td>383</td>
</tr>
<tr>
<td>36</td>
<td>Large-Scale Extraction of Proteins</td>
<td>Teresa Cunha and Raquel Aires-Barros</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>PART V. BIOCONVERSIONS IN TWO-PHASE SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Extractive Bioconversion in Aqueous Two-Phase Systems</td>
<td>Rajni Hatti-Kaul</td>
<td>413</td>
</tr>
<tr>
<td>38</td>
<td>Enzyme Reaction in Polymer–Polymer Organic Solvent Two-Phase System</td>
<td>Bo Mattiasson</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>429</td>
</tr>
</tbody>
</table>
Contributors

RAQUEL AIRES-BARROS • Laboratório de Engenharia Bioquimica, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisbon, Portugal

HANS-ERIK ÅKERLUND • Department of Plant Biochemistry, Lund University, Lund, Sweden

PER-ÅKE ALBERTSSON • Department of Biochemistry, Lund University, Lund, Sweden

LARS BACKMAN • Department of Biochemistry, Umeå University, Umeå, Sweden

MICHAEL J. BOLAND • New Zealand Dairy Research Institute, Palmerston North, New Zealand

DONALD E. BROOKS • Department of Pathology and Laboratory Medicine and Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada

WEN-YI CHEN • Department of Chemical Engineering, National Central University, Chunli, Taiwan

I-MING CHU • Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan

TERESA CUNHA • Laboratório de Engenharia Bioquimica, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisbon, Portugal

MARK A. ETIEMAN • Department of Biological and Agricultural Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA

LARS EKBLAD • Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

DANIEL FORCINITI • Chemical Engineering Department, University of Missouri-Rolla, Rolla, Missouri

TELMA TEIXEIRA FRANCO • Department of Chemical Engineering, State University of Campinas-UNICAMP, Campinas, Brazil

JAVIER E. GARCÍA • Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ

SCOTT T. GRIFFIN • Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, AL
Contributors

ROBERTO Z. GUZMÁN • Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ

LENA HAMMAR • Department of Biosciences at Novum, Karolinska Institutet, Huddinge, Sweden

ULLA-BRITT HANSSON • Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

RAJNI HATTI-KAUL • Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

JONATHAN G. HUDDLESTON • Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, AL

POUL ERIK H. JENSEN • Department of Immunology, Umeå University, Umeå, Sweden

BENGT JERGIL • Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

GÖTE JOHANSSON • Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

MASAMICHI KAMIHIRA • Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan

ANITA KAUL • Department of Food Science and Technology, Biotechnology and Biochemical Engineering Laboratory, University of Reading, Whiteknights, Reading, UK

JÜRGEN KIRCHBERGER • Institut für Biochemie, Universitätsklinikum, Universität Leipzig, Leipzig, Germany

GERHARD KOPPERSCHLÄGER • Institut für Biochemie, Universitätsklinikum, Universität Leipzig, Leipzig, Germany

CHRISTER LARSSON • Department of Plant Biochemistry, Lund University, Lund, Sweden

BO MATTIASSON • Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

ULRICH MENGE • Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany

TORSTEN MINUTH • Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany

BIRGITTA NORLING • Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden

RAYMOND NORRIS-JONES • Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada

NORA I. PEROTTI • Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), San Miguel de Tucumán, Argentina
Contributors

JOSEFINE PERSSON • Department of Biochemistry, Lund University, Lund, Sweden

GABRIEL RAYA-TONETTI • Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), San Miguel de Tucumán, Argentina

ROBIN D. ROGERS • Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, AL

VITHALDAS P. SHANBHAG • Department of Biochemistry, Umeå University, Umeå, Sweden

FOLKE TIERNELD • Department of Biochemistry, Lund University, Lund, Sweden

KRISTINA KÖHLER VAN ALSTINE • Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden

JAMES M. VAN ALSTINE • Department of Chemical Engineering and Technology, Royal Institute of Technology, Stockholm, Sweden; Department of Chemistry and Materials Science Program, University of Alabama, Huntsville, Alabama

ANDRES VEIDE • Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden

SUSANNE WIDELL • Department of Plant Physiology, Lund University, Lund, Sweden

HEATHER D. WILLAUER • Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, AL

CHRISTER WINGREN • Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

JIANHUA ZHANG • Department of Chemistry, Northern Illinois University, DeKalb, IL