For further volumes:
http://www.springer.com/series/7651
The rediscovery of thermogenic adipocytes in human adults has reignited a great deal of enthusiasm towards these unique metabolic cells that convert chemical energy into heat, therefore holding great promise for helping to counteract obesity and its associated metabolic disorders. It is now appreciated that at least two types of thermogenic adipocytes exist in rodents and humans, classical brown and inducible beige adipocytes. These two types of fat cells arise from distinct developmental origins and position in different anatomical locations. In contrast to white adipocytes that store surplus energy, brown and beige fat cells dissipate chemical energy through uncoupling protein 1 (UCP1), together with other mechanisms. In addition to their respective roles in mediating energy balance, all adipocytes function as endocrine organs and directly control systemic metabolism through adipocyte-secreted hormones (so-called adipokines) and metabolites. It is now considered settled science that adipose tissue as a whole plays a key role in maintaining metabolic homeostasis. Emerging evidence suggests that the mass and activity of thermogenic fat influence body weight, insulin sensitivity, glucose tolerance, and other key metabolic parameters. Further investigation and deeper understanding of the development and function of these thermogenic fat cells may lead to novel therapeutic strategies against metabolic syndromes.

Targeting both experts in this area who want to compare notes with colleagues in the field and newcomers that look forward to learning assays and starting their own investigation of brown and beige fat function, this volume collects protocols that describe methodologies to study thermogenic fat biology from various angles. The first part focuses on how to establish in vitro culture systems. Historically, many adipocyte-related studies have been carried out using immortalized cell lines, for example the famous 3T3-L1 cell line that was originally established by Dr. Howard Green’s group. While cell line work remains to be an indispensable approach, much of the thermogenic fat specific function can only be evaluated in primary cultures. Several chapters introduced methods on how to isolate, culture, and differentiate primary fat cells from both laboratory mice and humans. It has been reported that immune cells within the subcutaneous fat tissue regulate thermogenic fat functions through paracrine mechanisms. Several chapters presented flow cytometry methods to isolate various subpopulations of precursors within the stromal vascular fraction (SVF) of the adipose tissue, which contains both preadipocytes and immune cells. In the second part of the book, we first introduced multiple means to genetically manipulate and evaluate brown and beige fat in vivo. Since one of the most prominent functions of thermogenic fat is to mediate energy consumption through mitochondrial respiration, two chapters were dedicated to discuss methods on bioenergetics analyses both in vitro and in vivo. We further presented how to experimentally study ion channel function and cell-cell communication in these cells. Lastly, we discussed how to evaluate thermogenic fat content and activity in humans, how to culture and assay these cells through interdisciplinary approaches, including 3-D adipospheres and microfluidic systems, and how to use thermogenic fat cell lines to carry out drug screens.
The editor would like to thank all the contributing authors who shared their “trade secrets” here without reservations so that readers did not have to “reinvent the wheel” and learn these key assays with much less challenge. I am also very grateful to Dr. John Walker, who commissioned this timely book and has provided much invaluable advice along the way.

Ann Arbor, MI, USA

Jun Wu
# Contents

**Preface** ........................................................................................................................................... v

**Contributors** ................................................................................................................................. ix

**PART I  ISOLATION AND CULTURE METHODS**

1 Isolation, Primary Culture, and Differentiation of Preadipocytes from Mouse Brown Adipose Tissue ............................................................................................................. 3

   *Wei Gao, Xingxing Kong, and Qin Yang*

2 Isolation of Mouse Stromal Vascular Cells for Monolayer Culture ........................................... 9

   *Longhua Liu, Louise D. Zheng, Sarah R. Donnelly, Margo P. Emont, Jun Wu, and Zhiyong Cheng*

3 Flow Cytometry Assisted Isolation of Adipose Tissue Derived Stem Cells .................................. 17

   *Umesh D. Wankhade and Sushil G. Rane*

4 Flow Cytometric Isolation and Differentiation of Adipogenic Progenitor Cells into Brown and Brite/Beige Adipocytes ....................................................................................... 25

   *Jochen Steinbring, Antonia Graja, Anne-Marie Jank, and Tim J. Schulz*

5 Immuno-Magnetic Isolation and Thermogenic Differentiation of White Adipose Tissue Progenitor Cells ....................................................................................................................... 37

   *Rohollah Babaei, Irem Bayindir-Buchhalter, Irina Meln, and Alexandros Vegiopoulos*

6 Isolation of Immune Cells from Adipose Tissue for Flow Cytometry ............................................. 49

   *Jonathan R. Brestoff*

7 Differentiation and Metabolic Interrogation of Human Adipocytes ................................................. 61

   *Nicki A. Baker, Lindsey A. Muir, Carey N. Lumeng, and Robert W. O’Rourke*

8 Protocols for Generation of Immortalized Human Brown and White Preadipocyte Cell Lines ......... 77

   *Farnaz Shamsi and Yu-Hua Tseng*

**PART II  FUNCTIONAL ANALYSIS, BIOENGINEERING, AND OTHER APPLICATIONS**

9 Gene Expression and Histological Analysis of Activated Brown Adipocytes in Adipose Tissue ........ 89

   *Yun-Hee Lee*

10 Genetic Mouse Models: The Powerful Tools to Study Fat Tissues ............................................... 99

   *Xingxing Kong, Kevin W. Williams, and Tiemin Liu*

11 Genetic Manipulation with Viral Vectors to Assess Metabolism and Adipose Tissue Function .......... 125

   *Nicolás Gómez-Banoy and James C. Lo*
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Bioenergetic Analyses in Adipose Tissue</td>
<td>Lawrence Kazak</td>
</tr>
<tr>
<td>13</td>
<td>Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry</td>
<td>Eun Ran Kim and Qingchun Tong</td>
</tr>
<tr>
<td>14</td>
<td>Isolation and Patch-Clamp of Primary Adipocytes</td>
<td>Yanhui Zhang, Dan Tong, Anil Mishra, Litao Xie, Isaac Samuel, Jessica K. Smith, and Rajan Sah</td>
</tr>
<tr>
<td>15</td>
<td>In Vitro Approaches to Model and Study Communication Between Adipose Tissue and the Liver</td>
<td>Sean O'Connor and Paul Cohen</td>
</tr>
<tr>
<td>16</td>
<td>Identification and Quantification of Human Brown Adipose Tissue</td>
<td>Maria Chondronikola, Craig Porter, John O. Ogunbileje, and Labros S. Sidossis</td>
</tr>
<tr>
<td>17</td>
<td>Designing 3-D Adipospheres for Quantitative Metabolic Study</td>
<td>Takeshi Akama, Brendan M. Leung, Joe Labuz, Shuichi Takayama, and Tae-Hwa Chun</td>
</tr>
<tr>
<td>18</td>
<td>Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems</td>
<td>Jessica C. Brooks, Robert L. Judd, and Christopher J. Easley</td>
</tr>
<tr>
<td>19</td>
<td>Using Thermogenic Beige Cells to Identify Biologically Active Small Molecules and Peptides</td>
<td>Ling Wu and Bin Xu</td>
</tr>
</tbody>
</table>

Index | 213
Contributors

Takeshi Akama • Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

Rohollah Babaei • DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany

Nicki A. Baker • Section of General Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

Irem Bayindir-Buchhalter • DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany

Jonathan R. Brestoff • Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA

Jessica C. Brooks • Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA

Zhiyong Cheng • Department of Human Nutrition, Foods and Exercise, Fralin Life Science Institute, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA, USA

Maria Chondronikola • Center for Human Nutrition, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Harokopio University of Athens, Athens, Greece

Tae-Hwa Chun • Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

Paul Cohen • Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA

Sarah R. Donnelly • Department of Human Nutrition, Foods and Exercise, Fralin Life Science Institute, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA, USA

Christopher J. Easley • Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA

Margo P. Emont • Department of Molecular and Integrative Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA

Wei Gao • Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, Center for Epigenetics and Metabolism, University of California-Irvine, Irvine, CA, USA

Nicolás Gómez-Banoy • Metabolic Health Center, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA

Antonia Graja • Research Group Adipocyte Development, German Institute of Human Nutrition (DIfE), Nuthetal, Germany

Anne-Marie Jank • Research Group Adipocyte Development, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
Robert L. Judd • Department of Anatomy Physiology and Pharmacology, Auburn University, Auburn, AL, USA
Lawrence Kazak • Dana-Farber Cancer Institute, Harvard Medical School, Cancer Biology CLS 11116, Boston, MA, USA
Eun Ran Kim • Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, USA
Xingxing Kong • Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
Joe Labuz • Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
Yun-Hee Lee • College of Pharmacy, Yonsei University, Incheon, South Korea
Brendan M. Leung • Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
Longhua Liu • Department of Human Nutrition, Foods and Exercise, Fralin Life Science Institute, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA, USA
Tiemin Liu • Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
James C. Lo • Metabolic Health Center, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
Carey N. Lumeng • Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
Irina Meln • DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
Anil Mishra • Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
Lindsey A. Muir • Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
Sean O'Connor • Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
John O. Ogundele • Department of Surgery, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Metabolism Unit, Shriners Hospitals for Children-Galveston, Galveston, TX, USA
Robert W. O'Rourke • Section of General Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Surgery, Ann Arbor Veteran's Administration Hospital, Ann Arbor, MI, USA
Craig Porter • Department of Surgery, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Metabolism Unit, Shriners Hospitals for Children-Galveston, Galveston, TX, USA
Sushil G. Rane • Cell Growth and Metabolism Section, Diabetes, Endocrinology, and Obesity Branch, NIDDK, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
Rajan Sah • Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, USA
Isaac Samuel • Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
Contributors

Tim J. Schulz • Research Group Adipocyte Development, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany

Farnaz Shamsi • Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA

Labros S. Sidossis • Harokopio University of Athens, Athens, Greece; Department of Surgery, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Metabolism Unit, Shriners Hospitals for Children-Galveston, Galveston, TX, USA; Departments of Medicine, Rutgers University, New Brunswick, NJ, USA; Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA

Jessica K. Smith • Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, USA

Jochen Steinbring • Research Group Adipocyte Development, German Institute of Human Nutrition (DIfE), Nuthetal, Germany

Shuichi Takayama • Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

Dan Tong • Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA

Qingchun Tong • Brown Foundation Institute of Molecular Medicine and Graduate Program in Neuroscience of Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, TX, USA; Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, USA

Yu-Hua Tseng • Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA

Alexandros Vegisopoulos • DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany

Umesh D. Wankhade • Cell Growth and Metabolism Section, Diabetes, Endocrinology, and Obesity Branch, NIDDK, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA

Kevin W. Williams • Division of Hypothalamic Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

Jun Wu • Department of Molecular and Integrative Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA

Ling Wu • Department of Biochemistry, Center for Drug Discovery, and Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA

Litaow Xie • Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA

Bin Xu • Department of Biochemistry, Center for Drug Discovery, and Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA

Qin Yang • Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, Center for Epigenetics and Metabolism, University of California-Irvine, Irvine, CA, USA

Yanhu Zhang • Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA

Louise D. Zheng • Department of Human Nutrition, Foods and Exercise, Fralin Life Science Institute, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA, USA