Series Editor
John M. Walker
School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
ERK Signaling

Methods and Protocols

Edited by

Gerardo Jiménez

Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain;
ICREA, Barcelona, Spain

Humana Press
Because of its multiple essential functions in metazoans, and its strong connection to cancer, the ERK pathway is generally considered a paradigm in cell signaling. Indeed, there is hardly any cellular or developmental process that is not controlled, directly or indirectly, by a pathway (most prominently the Ras-Raf pathway) converging on the ERK kinase. Furthermore, the clinical significance of ERK signaling has been recently highlighted by its involvement in several human congenital syndromes, referred to as RASopathies. It is therefore not surprising that new research approaches are continuously being developed and adapted to study ERK signaling at all levels—from the atomic and single-molecule level to the biology of complex diseases.

This volume of Methods in Molecular Biology provides a collection of techniques and approaches for the study of ERK signaling. It begins with a historical perspective of genetic and molecular discoveries, followed by chapters covering specific topics and a broad range of experimental systems. To some extent, the book represents a continuation of two previous excellent volumes in the series, entitled MAP Kinase Signaling Protocols and edited by Rony Seger. Thus, we have primarily selected protocols and strategies developed in recent years, which update and extend those described in the previous volumes.

Editing this book has been a rewarding experience for me, and I would like to take this opportunity to thank all those who have helped me along the way to be able to do this work. In particular, I wish to thank David Ish-Horowicz for his wisdom and inspirational mentoring during my early Drosophila training, and my various friends, colleagues, and students for many stimulating discussions and fruitful collaborations over the last years. Special thanks are also due to the ICREA Institution and our funding agencies for their vital support, and, of course, to my family for their endless patience, love, and encouragement.

Finally, this book is a collective effort by more than 70 authors who have generously dedicated their time and expertise to prepare the chapters. I am very grateful to them, as well as to John Walker and the Springer team for their guidance throughout the project. We very much hope that this volume will aid and stimulate further advances in the vibrant field of ERK signaling.

Barcelona, Spain

Gerardo Jiménez
Contents

Preface
Dariel Ashton-Beaucage and Marc Therrien

Contributors

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How Genetics Has Helped Piece Together the MAPK Signaling Pathway</td>
<td>Dariel Ashton-Beaucage and Marc Therrien</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>In Vitro Enzyme Kinetics Analysis of EGFR</td>
<td>Zhihong Wang and Christine Candelora</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>High-Throughput Analysis of Mammalian Receptor Tyrosine Kinase Activation in Yeast Cells</td>
<td>Nobuo Yoshimoto and Shun’ichi Kuroda</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Structural Studies of ERK2 Protein Complexes</td>
<td>Johannes F. Weijman, Stefan J. Riedl, and Peter D. Mace</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>Isolation and Characterization of Intrinsically Active (MEK-Independent) Mutants of Mpk1/Erk</td>
<td>Tal Goshen-Lago, Dganit Melamed, Arie Adnon, and David Engelberg</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Assaying Activation and Subcellular Localization of ERK in Cells and Tissues</td>
<td>Carme Caelles, Carles Bayod, and Melisa Morcillo</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>Detection and Functional Analysis of SUMO-Modified MEK</td>
<td>Yuji Kubota and Mutsuhiro Takekawa</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Single-Step Affinity Purification of ERK Signaling Complexes Using the Streptavidin-Binding Peptide (SBP) Tag</td>
<td>Liu Yang and Alexey Veraksa</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>High-Throughput In Vitro Identification of Direct MAPK/Erk Substrates</td>
<td>Rona Grossman and Ze’ev Paroush</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE</td>
<td>Hidetaka Kosako and Kou Motani</td>
<td>137</td>
</tr>
<tr>
<td>11</td>
<td>Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation</td>
<td>Lorena Agudo-Ibáñez, Piero Crespo, and Berta Casar</td>
<td>151</td>
</tr>
<tr>
<td>12</td>
<td>Cell-Based Assays to Study ERK Pathway/Caveolin1 Interactions</td>
<td>Raffaiele Strippoli, Asier Echarri, and Miguel Angel del Pozo</td>
<td>163</td>
</tr>
<tr>
<td>13</td>
<td>The Nuclear Translocation of ERK</td>
<td>Denise A. Berti and Rony Seger</td>
<td>175</td>
</tr>
<tr>
<td>14</td>
<td>Visualization of RAS/MAPK Signaling In Situ by the Proximity Ligation Assay (PLA)</td>
<td>Zijian Tang and Chengkai Dai</td>
<td>195</td>
</tr>
</tbody>
</table>
15 Measuring ERK Activity Dynamics in Single Living Cells
Using FRET Biosensors .. 203
Yannick Blum, Rafael D. Fritz, Hyunryul Ryu, and Olivier Pertz

16 Quantifying Tensile Force and ERK Phosphorylation
on Actin Stress Fibers .. 223
Hironaki Hirata, Mukund Gupta, Sri Ram Krishna Vedula,
Chwee Teck Lim, Benoit Ladoux, and Masahiro Sokabe

17 Co-culture Activation of MAP Kinase in Drosophila S2 Cells 235
Josefa Steinhauer

18 Isolation of Mouse Embryonic Stem Cell Lines in the Study
of ERK1/2 MAP Kinase Signaling 243
Marc K. Saba-El-Leil, Christophe Frémin, and Sylvain Meloche

19 3D Organotypic Culture Model to Study Components of ERK Signaling . . . 255
Athina-Myrto Chioni, Rabia Tayba Bajwa, and Richard Grose

20 Genetic Validation of Cell Proliferation via Ras-Independent
Activation of the Raf/Mek/Erk Pathway 269
Carmen G. Lechuga, Lucía Simón-Carrasco, Harrys K.C. Jacob,
and Matthias Drosten

21 Genome-Wide Analysis of RAS/ERK Signaling Targets 277
Joshua P. Plotnik and Peter C. Hollenhorst

22 Probing Chromatin Modifications in Response to ERK Signaling 289
Ozgur Oksuz and Wee-Wei Tee

23 Analyzing pERK Activation During Planarian Regeneration 303
Susanna Fraguas, Yoshihiko Umesono, Kiyokazu Agata,
and Francesc Cebrià

24 Discovering Functional ERK Substrates Regulating Caenorhabditis
elegans Germline Development 317
Jessica Jie Chen and Swathi Arur

25 Reconstructing ERK Signaling in the Drosophila Embryo
from Fixed Images .. 337
Bomyi Lim, Carmeline J. Dsilva, Ioannis G. Kevrekidis,
and Stanislav Y. Shvartsman

26 Using CRISPR-Cas9 to Study ERK Signaling in Drosophila 353
Marta Forés, Aikaterini Papagianni, Laura Rodríguez-Muñoz,
and Gerardo Jiménez

27 Analyzing ERK Signal Dynamics During Zebrafish Somitogenesis 367
Takaaki Matsui and Yasumasa Bessho

28 Modeling RASopathies with Genetically Modified Mouse Models 379
Isabel Hernández-Porras and Carmen Guerra

29 Dissecting Cell-Fate Determination Through Integrated Mathematical
Modeling of the ERK/MAPK Signaling Pathway 409
Sung-Young Shin and Lan K. Nguyen

Index ... 433
Contributors

Arie Admon • Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
Kiyokazu Agata • Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
Lorena Agudo-Ibañez • Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas – Universidad de Cantabria, Santander, Cantabria, Spain
Swathi Arur • The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Dariel Ashton-Beaucage • Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, QC, Canada
Rabia Tayba Bajwa • Biomolecular Sciences Department, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK
Carles Bayod • Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
Denise A. Berti • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
Yasumasa Bessho • Gene Regulation Research, Nara Institute of Science and Technology, Takayama, Nara, Japan
Yannick Blum • Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Cell Biology, University of Bern, Bern, Switzerland
Carme Caelles • Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
Christine Candelora • Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
Berta Casar • Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas – Universidad de Cantabria, Santander, Cantabria, Spain
Francesc Cebrià • Departament de Genètica i Institut de Biomedicina de la Universitat de Barcelona (IBUB), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
Jessica Jie Chen • The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
Athina-Myrto Chioni • Biomolecular Sciences Department, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK
Piero Crespo • Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas – Universidad de Cantabria, Santander, Cantabria, Spain
Chengkai Dai • The Jackson Laboratory, Bar Harbor, ME, USA
Matthias Drosten • Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
Carmeline J. Dsilva • Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
ASIER ECHARRI • Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain

DAVID ENGELBERG • Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; CREATE-NUS-HUJ Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

MARTA FORÉS • Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain

SUSANNA FRAGUAS • Departament de Genètica i Institut de Biomedicina de la Universitat de Barcelona (IBUB), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain

CHRISTOPHE FRÉMIN • Institute for Research in Cancer of Montpellier, Montpellier, France

RAFAEL D. FRITZ • Department of Biomedicine, University of Basel, Basel, Switzerland

TAL GOSHEN-LAGO • Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

RICHARD GROSE • Barts Cancer Institute, Queen Mary University of London, London, UK

RONA GROSSMAN • Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel

CARMEN GUERRA • Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain

MUKUND GUPTA • Mechanobiology Institute, National University of Singapore, Singapore, Singapore

ISABEL HERNÁNDEZ-PORRAS • Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain

Hiroaki Hirata • Mechanobiology Institute, National University of Singapore, Singapore, Singapore; R-Pharm Japan and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan

PETER C. HOLLENHORST • Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA

HARRYS K.C. JACOB • Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain

GERARDO JIMÉNEZ • Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain

IOANNIS G. KEVREKIDIS • Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA; Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA

HIDETAKA KOSAKO • Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan

YUJI KUBOTA • Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan

SHUN’ICHI KURODA • Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan

BENOIT LADOUX • Mechanobiology Institute, National University of Singapore, Singapore; Institut Jacques Monod (IJM), CNRS UMR 7592, Paris, France; Université Paris Diderot, Paris, France
Contributors

MARC K. SABA-EL-LEIL • Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
RONY SEGER • Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
SUNG-YOUNG SHIN • Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
STANISLAV Y. SHVARTSMAN • Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
LUCÍA SIMÓN-CARRASCO • Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
MASAHIRO SOKABE • Mechanobiology Institute, National University of Singapore, Singapore; Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
JOSEFA STEINHAUER • Department of Biology, Yeshiva University, New York, NY, USA
RAFFAELE STRIPPOLI • Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
MUTSUHIRO TAKEKAWA • Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
ZIJIAN TANG • The Jackson Laboratory, Bar Harbor, ME, USA; Graduate Programs, Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
WEE-WEI TEE • Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore; Department of Physiology, Tong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
MARC THERRIEN • Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, QC, Canada; Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montreal, QC, Canada
YOSHIHIKO UMESONO • Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
SRI RAM KRISHNA VEDULA • Mechanobiology Institute, National University of Singapore, Singapore, Singapore; L’Oreal Research and Innovation, Singapore, Singapore
ALEXEY VERAKSA • Department of Biology, University of Massachusetts Boston, Boston, MA, USA
ZHIHONG WANG • Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
JOHANNES F. WEIJMAN • Biochemistry Department, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
LIU YANG • Department of Biology, University of Massachusetts Boston, Boston, MA, USA
NOBUO YOSHIMOTO • Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan